BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33334028)

  • 1. Deep Learning for Activity Recognition in Older People Using a Pocket-Worn Smartphone.
    Nan Y; Lovell NH; Redmond SJ; Wang K; Delbaere K; van Schooten KS
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33334028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.
    Avilés-Cruz C; Ferreyra-Ramírez A; Zúñiga-López A; Villegas-Cortéz J
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Orientation Invariant Heuristic Features with Variant Window Length of 1D-CNN-LSTM in Human Activity Recognition.
    Barua A; Fuller D; Musa S; Jiang X
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobile sensor based human activity recognition: distinguishing of challenging activities by applying long short-term memory deep learning modified by residual network concept.
    Shojaedini SV; Beirami MJ
    Biomed Eng Lett; 2020 Aug; 10(3):419-430. PubMed ID: 32864175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effectiveness of simple heuristic features in sensor orientation and placement problems in human activity recognition using a single smartphone accelerometer.
    Barua A; Jiang X; Fuller D
    Biomed Eng Online; 2024 Feb; 23(1):21. PubMed ID: 38368358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones.
    Ankita ; Rani S; Babbar H; Coleman S; Singh A; Aljahdali HM
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring.
    Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and optimization of a TensorFlow Lite deep learning neural network for human activity recognition on a smartphone.
    Adi SE; Casson AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7028-7031. PubMed ID: 34892721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of one-dimensional CNN for input data size reduction in LSTM for improved computational efficiency and accuracy in hourly rainfall-runoff modeling.
    Ishida K; Ercan A; Nagasato T; Kiyama M; Amagasaki M
    J Environ Manage; 2024 May; 359():120931. PubMed ID: 38678895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition.
    Yen CT; Liao JX; Huang YK
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Deep Learning Network for Gait Recognition Using Multimodal Inertial Sensors.
    Shi LF; Liu ZY; Zhou KJ; Shi Y; Jing X
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry.
    Nait Aicha A; Englebienne G; van Schooten KS; Pijnappels M; Kröse B
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29786659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single Accelerometer to Recognize Human Activities Using Neural Networks.
    Vakacherla SS; Kantharaju P; Mevada M; Kim M
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36695756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Activity Recognition via Hybrid Deep Learning Based Model.
    Khan IU; Afzal S; Lee JW
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applying deep neural networks and inertial measurement unit in recognizing irregular walking differences in the real world.
    Hu B; Li S; Chen Y; Kavi R; Coppola S
    Appl Ergon; 2021 Oct; 96():103414. PubMed ID: 34087702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Edge deep learning for neural implants: a case study of seizure detection and prediction.
    Liu X; Richardson AG
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33794507
    [No Abstract]   [Full Text] [Related]  

  • 19. A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.
    Liu K; Liu Y; Ji S; Gao C; Zhang S; Fu J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models.
    Poulose A; Kim JH; Han DS
    Comput Intell Neurosci; 2022; 2022():1808990. PubMed ID: 36248917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.