These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33334028)

  • 21. Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods.
    Buyuk C; Arican Alpay B; Er F
    Dentomaxillofac Radiol; 2023 Feb; 52(3):20220209. PubMed ID: 36688738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Investigation of Deep Learning Models for EEG-Based Emotion Recognition.
    Zhang Y; Chen J; Tan JH; Chen Y; Chen Y; Li D; Yang L; Su J; Huang X; Che W
    Front Neurosci; 2020; 14():622759. PubMed ID: 33424547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bathroom activities monitoring for older adults by a wrist-mounted accelerometer using a hybrid deep learning model.
    Shang M; Zhang Y; Ali Amer AY; D'Haeseleer I; Vanrumste B
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7112-7115. PubMed ID: 34892740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of Muscle Forces of Lower Limbs Based on CNN-LSTM Neural Network and Wearable Sensor System.
    Liu K; Liu Y; Ji S; Gao C; Fu J
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human Activity Recognition Based on Residual Network and BiLSTM.
    Li Y; Wang L
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Utilizing deep learning models in CSI-based human activity recognition.
    Shalaby E; ElShennawy N; Sarhan A
    Neural Comput Appl; 2022; 34(8):5993-6010. PubMed ID: 35017796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid CNN-LSTM for Predicting Diabetes: A Review.
    Soltanizadeh S; Naghibi SS
    Curr Diabetes Rev; 2024; 20(7):e201023222410. PubMed ID: 37867273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors.
    Moreira D; Barandas M; Rocha T; Alves P; Santos R; Leonardo R; Vieira P; Gamboa H
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CNN-LSTM deep learning based forecasting model for COVID-19 infection cases in Nigeria, South Africa and Botswana.
    Muhammad LJ; Haruna AA; Sharif US; Mohammed MB
    Health Technol (Berl); 2022; 12(6):1259-1276. PubMed ID: 36406187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy Expenditure Prediction from Accelerometry Data Using Long Short-Term Memory Recurrent Neural Networks.
    Vibæk M; Peimankar A; Wiil UK; Arvidsson D; Brønd JC
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation.
    Salimi M; Machado JJM; Tavares JMRS
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of municipal solid waste amount based on one-dimension convolutional neural network and long short-term memory with attention mechanism model: A case study of Shanghai.
    Lin K; Zhao Y; Tian L; Zhao C; Zhang M; Zhou T
    Sci Total Environ; 2021 Oct; 791():148088. PubMed ID: 34118670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A hybrid deep approach to recognizing student activity and monitoring health physique based on accelerometer data from smartphones.
    Xiao L; Luo K; Liu J; Foroughi A
    Sci Rep; 2024 Jun; 14(1):14006. PubMed ID: 38890409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated Detection of Rehabilitation Exercise by Stroke Patients Using 3-Layer CNN-LSTM Model.
    Rahman ZU; Ullah SI; Salam A; Rahman T; Khan I; Niazi B
    J Healthc Eng; 2022; 2022():1563707. PubMed ID: 35154616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals.
    Khademi Z; Ebrahimi F; Kordy HM
    Comput Biol Med; 2022 Apr; 143():105288. PubMed ID: 35168083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning.
    Srikantamurthy MM; Rallabandi VPS; Dudekula DB; Natarajan S; Park J
    BMC Med Imaging; 2023 Jan; 23(1):19. PubMed ID: 36717788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prevalence and risk factors analysis of postpartum depression at early stage using hybrid deep learning model.
    Lilhore UK; Dalal S; Varshney N; Sharma YK; Rao KBVB; Rao VVRM; Alroobaea R; Simaiya S; Margala M; Chakrabarti P
    Sci Rep; 2024 Feb; 14(1):4533. PubMed ID: 38402249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance.
    Lu H; Ehwerhemuepha L; Rakovski C
    BMC Med Res Methodol; 2022 Jul; 22(1):181. PubMed ID: 35780100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Novel CNN-based Bi-LSTM parallel model with attention mechanism for human activity recognition with noisy data.
    Yin X; Liu Z; Liu D; Ren X
    Sci Rep; 2022 May; 12(1):7878. PubMed ID: 35550570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Learning for Infant Cry Recognition.
    Liang YC; Wijaya I; Yang MT; Cuevas Juarez JR; Chang HT
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.