These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2620 related articles for article (PubMed ID: 33334294)
1. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
2. 3D printing and characterization of human nasoseptal chondrocytes laden dual crosslinked oxidized alginate-gelatin hydrogels for cartilage repair approaches. Schwarz S; Kuth S; Distler T; Gögele C; Stölzel K; Detsch R; Boccaccini AR; Schulze-Tanzil G Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111189. PubMed ID: 32806255 [TBL] [Abstract][Full Text] [Related]
3. 3D Bioprinting-Based Dopamine-Coupled Flexible Material for Nasal Cartilage Repair. Jia W; Liu Z; Ma Z; Hou P; Cao Y; Shen Z; Li M; Zhang H; Guo X; Sang S Aesthetic Plast Surg; 2024 Aug; 48(15):2951-2964. PubMed ID: 38528127 [TBL] [Abstract][Full Text] [Related]
4. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application. Chu Y; Huang L; Hao W; Zhao T; Zhao H; Yang W; Xie X; Qian L; Chen Y; Dai J Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34507313 [TBL] [Abstract][Full Text] [Related]
5. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering. Gupta D; Vashisth P; Bellare J Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33761468 [TBL] [Abstract][Full Text] [Related]
6. Chondrocyte-laden GelMA hydrogel combined with 3D printed PLA scaffolds for auricle regeneration. Tang P; Song P; Peng Z; Zhang B; Gui X; Wang Y; Liao X; Chen Z; Zhang Z; Fan Y; Li Z; Cen Y; Zhou C Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112423. PubMed ID: 34702546 [TBL] [Abstract][Full Text] [Related]
7. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
8. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110578. PubMed ID: 32228894 [TBL] [Abstract][Full Text] [Related]
9. Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds. Liu F; Li W; Liu H; Yuan T; Yang Y; Zhou W; Hu Y; Yang Z Macromol Biosci; 2021 Apr; 21(4):e2000398. PubMed ID: 33624936 [TBL] [Abstract][Full Text] [Related]
10. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. Kundu J; Shim JH; Jang J; Kim SW; Cho DW J Tissue Eng Regen Med; 2015 Nov; 9(11):1286-97. PubMed ID: 23349081 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. Sadeghianmaryan A; Naghieh S; Yazdanpanah Z; Alizadeh Sardroud H; Sharma NK; Wilson LD; Chen X Int J Biol Macromol; 2022 Apr; 204():62-75. PubMed ID: 35124017 [TBL] [Abstract][Full Text] [Related]
12. A multicrosslinked network composite hydrogel scaffold based on DLP photocuring printing for nasal cartilage repair. Jia W; Liu Z; Sun L; Cao Y; Shen Z; Li M; An Y; Zhang H; Sang S Biotechnol Bioeng; 2024 Sep; 121(9):2752-2766. PubMed ID: 38877732 [TBL] [Abstract][Full Text] [Related]
13. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds. Sultan S; Mathew AP J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of photo-crosslinked chitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture. Zhao P; Deng C; Xu H; Tang X; He H; Lin C; Su J Biomed Mater Eng; 2014; 24(1):633-41. PubMed ID: 24211948 [TBL] [Abstract][Full Text] [Related]
15. Lyophilized Scaffolds Fabricated from 3D-Printed Photocurable Natural Hydrogel for Cartilage Regeneration. Xia H; Zhao D; Zhu H; Hua Y; Xiao K; Xu Y; Liu Y; Chen W; Liu Y; Zhang W; Liu W; Tang S; Cao Y; Wang X; Chen HH; Zhou G ACS Appl Mater Interfaces; 2018 Sep; 10(37):31704-31715. PubMed ID: 30157627 [TBL] [Abstract][Full Text] [Related]
16. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration. Miao G; Liang L; Li W; Ma C; Pan Y; Zhao H; Zhang Q; Xiao Y; Yang X Biomolecules; 2023 Jun; 13(7):. PubMed ID: 37509098 [TBL] [Abstract][Full Text] [Related]
17. Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering. Sadeghianmaryan A; Naghieh S; Alizadeh Sardroud H; Yazdanpanah Z; Afzal Soltani Y; Sernaglia J; Chen X Int J Biol Macromol; 2020 Dec; 164():3179-3192. PubMed ID: 32853616 [TBL] [Abstract][Full Text] [Related]
18. Development and Characterization of Heparin-Containing Hydrogel/3D-Printed Scaffold Composites for Craniofacial Reconstruction. Brown NE; Ellerbe LR; Hollister SJ; Temenoff JS Ann Biomed Eng; 2024 Aug; 52(8):2287-2307. PubMed ID: 38734845 [TBL] [Abstract][Full Text] [Related]
19. Anisotropic Chitosan Scaffolds Generated by Electrostatic Flocking Combined with Alginate Hydrogel Support Chondrogenic Differentiation. Gossla E; Bernhardt A; Tonndorf R; Aibibu D; Cherif C; Gelinsky M Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502249 [TBL] [Abstract][Full Text] [Related]
20. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]