These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33334534)

  • 41. Syntrophic biodegradation of hydrocarbon contaminants.
    Gieg LM; Fowler SJ; Berdugo-Clavijo C
    Curr Opin Biotechnol; 2014 Jun; 27():21-9. PubMed ID: 24863893
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new analytical approach for the comprehensive characterization of polar xenobiotic organic compounds downgradient of old municipal solid waste (MSW) landfills.
    Preiss A; Berger-Preiss E; Elend M; Gerling S; Kühn S; Schuchardt S
    Anal Bioanal Chem; 2012 Jul; 403(9):2553-61. PubMed ID: 22526634
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In situ remediation of tetrachloroethylene and its intermediates in groundwater using an anaerobic/aerobic permeable reactive barrier.
    Liu S; Yang Q; Yang Y; Ding H; Qi Y
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26615-26622. PubMed ID: 28956245
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transport and anaerobic biodegradation of propylene glycol in gravel-rich soil materials.
    Jaesche P; Totsche KU; Kögel-Knabner I
    J Contam Hydrol; 2006 May; 85(3-4):271-86. PubMed ID: 16563561
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhancement of anaerobic degradation of petroleum hydrocarbons by electron intermediate: Performance and mechanism.
    Liu X; Li Z; Zhang C; Tan X; Yang X; Wan C; Lee DJ
    Bioresour Technol; 2020 Jan; 295():122305. PubMed ID: 31675520
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An anaerobic two-layer permeable reactive biobarrier for the remediation of nitrate-contaminated groundwater.
    Liu SJ; Zhao ZY; Li J; Wang J; Qi Y
    Water Res; 2013 Oct; 47(16):5977-85. PubMed ID: 24064548
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anaerobic degradation of polycyclic aromatic hydrocarbons.
    Meckenstock RU; Safinowski M; Griebler C
    FEMS Microbiol Ecol; 2004 Jul; 49(1):27-36. PubMed ID: 19712381
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation.
    Schreiber ME; Carey GR; Feinstein DT; Bahr JM
    J Contam Hydrol; 2004 Sep; 73(1-4):99-127. PubMed ID: 15336791
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of fuel alcohol on monoaromatic hydrocarbon biodegradation and natural attenuation.
    Alvarez PJ; Hunt CS
    Rev Latinoam Microbiol; 2002; 44(2):83-104. PubMed ID: 17063777
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced natural attenuation of BTEX in the nitrate-reducing environment by different electron acceptors.
    Zhao Y; Qu D; Hou Z; Zhou R
    Environ Technol; 2015; 36(5-8):615-21. PubMed ID: 25185793
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes.
    Bauer RD; Rolle M; Bauer S; Eberhardt C; Grathwohl P; Kolditz O; Meckenstock RU; Griebler C
    J Contam Hydrol; 2009 Feb; 105(1-2):56-68. PubMed ID: 19095328
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d.
    Bai YN; Wang XN; Wu J; Lu YZ; Fu L; Zhang F; Lau TC; Zeng RJ
    Water Res; 2019 Nov; 164():114935. PubMed ID: 31387057
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment.
    Ghattas AK; Fischer F; Wick A; Ternes TA
    Water Res; 2017 Jun; 116():268-295. PubMed ID: 28347952
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.
    Kästner M; Miltner A
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3433-49. PubMed ID: 26921182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions.
    Ambrosoli R; Petruzzelli L; Luis Minati J; Ajmone Marsan F
    Chemosphere; 2005 Sep; 60(9):1231-6. PubMed ID: 16018893
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Geochemical and physiological evidence for mixed aerobic and anaerobic field biodegradation of coal tar waste by subsurface microbial communities.
    Bakermans C; Hohnstock-Ashe AM; Padmanabhan S; Padmanabhan P; Madsen EL
    Microb Ecol; 2002 Aug; 44(2):107-17. PubMed ID: 12087424
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Anaerobic biodegradation of microcystin by bacterial community from sediment of Dianchi Lake].
    Chen XG; Yang X; Chen J; Zhang SH; Xiao BD
    Huan Jing Ke Xue; 2009 Sep; 30(9):2527-31. PubMed ID: 19927798
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Challenges and opportunities for the biodegradation of chlorophenols: Aerobic, anaerobic and bioelectrochemical processes.
    Yang K; Zhao Y; Ji M; Li Z; Zhai S; Zhou X; Wang Q; Wang C; Liang B
    Water Res; 2021 Apr; 193():116862. PubMed ID: 33550168
    [TBL] [Abstract][Full Text] [Related]  

  • 59. (Per)chlorate-reducing bacteria can utilize aerobic and anaerobic pathways of aromatic degradation with (per)chlorate as an electron acceptor.
    Carlström CI; Loutey D; Bauer S; Clark IC; Rohde RA; Iavarone AT; Lucas L; Coates JD
    mBio; 2015 Mar; 6(2):. PubMed ID: 25805732
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anaerobic benzene degradation by bacteria.
    Vogt C; Kleinsteuber S; Richnow HH
    Microb Biotechnol; 2011 Nov; 4(6):710-24. PubMed ID: 21450012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.