These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 33334538)
1. Review on the NO removal from flue gas by oxidation methods. Si M; Shen B; Adwek G; Xiong L; Liu L; Yuan P; Gao H; Liang C; Guo Q J Environ Sci (China); 2021 Mar; 101():49-71. PubMed ID: 33334538 [TBL] [Abstract][Full Text] [Related]
2. Effect of NOx control processes on mercury speciation in utility flue gas. Richardson C; Machalek T; Miller S; Dene C; Chang R J Air Waste Manag Assoc; 2002 Aug; 52(8):941-7. PubMed ID: 12184693 [TBL] [Abstract][Full Text] [Related]
3. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions. Lee CW; Srivastava RK; Ghorishi SB; Hastings TW; Stevens FM J Air Waste Manag Assoc; 2004 Dec; 54(12):1560-6. PubMed ID: 15648394 [TBL] [Abstract][Full Text] [Related]
4. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. Gao Y; Zhang Z; Wu J; Duan L; Umar A; Sun L; Guo Z; Wang Q Environ Sci Technol; 2013 Oct; 47(19):10813-23. PubMed ID: 23991895 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Elemental Mercury Oxidation Across Vanadium and Cerium Based Catalysts in Coal Combustion Flue Gas: Catalytic Performances and Particulate Matter Effects. Wan Q; Yao Q; Duan L; Li X; Zhang L; Hao J Environ Sci Technol; 2018 Mar; 52(5):2981-2987. PubMed ID: 29415539 [TBL] [Abstract][Full Text] [Related]
6. Survey of catalysts for oxidation of mercury in flue gas. Presto AA; Granite EJ Environ Sci Technol; 2006 Sep; 40(18):5601-9. PubMed ID: 17007115 [TBL] [Abstract][Full Text] [Related]
7. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas. Yan N; Chen W; Chen J; Qu Z; Guo Y; Yang S; Jia J Environ Sci Technol; 2011 Jul; 45(13):5725-30. PubMed ID: 21662986 [TBL] [Abstract][Full Text] [Related]
8. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units. Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812 [TBL] [Abstract][Full Text] [Related]
9. Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler. Meischen SJ; Van Pelt VJ; Zarate EA; Stephens EA J Air Waste Manag Assoc; 2004 Jan; 54(1):60-7. PubMed ID: 14871013 [TBL] [Abstract][Full Text] [Related]
10. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal. Cao Y; Gao Z; Zhu J; Wang Q; Huang Y; Chiu C; Parker B; Chu P; Pant WP Environ Sci Technol; 2008 Jan; 42(1):256-61. PubMed ID: 18350905 [TBL] [Abstract][Full Text] [Related]
11. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Li H; Wu CY; Li Y; Zhang J Environ Sci Technol; 2011 Sep; 45(17):7394-400. PubMed ID: 21770402 [TBL] [Abstract][Full Text] [Related]
12. Biological treatments of mercury and nitrogen oxides in flue gas: biochemical foundations, technological potentials, and recent advances. Huang Z; Wei Z; Tang M; Yu S; Jiao H Adv Appl Microbiol; 2021; 116():133-168. PubMed ID: 34353503 [TBL] [Abstract][Full Text] [Related]
13. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions. Lee CW; Serre SD; Zhao Y; Lee SJ; Hastings TW J Air Waste Manag Assoc; 2008 Apr; 58(4):484-93. PubMed ID: 18422035 [TBL] [Abstract][Full Text] [Related]
14. Abatement of NO/SO Yuan P; Ma H; Shen B; Ji Z Sci Total Environ; 2022 Feb; 806(Pt 4):150958. PubMed ID: 34656565 [TBL] [Abstract][Full Text] [Related]
15. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants. Senior CL J Air Waste Manag Assoc; 2006 Jan; 56(1):23-31. PubMed ID: 16499143 [TBL] [Abstract][Full Text] [Related]
16. Copper slag as a catalyst for mercury oxidation in coal combustion flue gas. Li H; Zhang W; Wang J; Yang Z; Li L; Shih K Waste Manag; 2018 Apr; 74():253-259. PubMed ID: 29229180 [TBL] [Abstract][Full Text] [Related]
17. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas. Niksa S; Fujiwara N J Air Waste Manag Assoc; 2005 Dec; 55(12):1866-75. PubMed ID: 16408691 [TBL] [Abstract][Full Text] [Related]
18. Multipollutant Control (MPC) of Flue Gas from Stationary Sources Using SCR Technology: A Critical Review. Wang D; Chen Q; Zhang X; Gao C; Wang B; Huang X; Peng Y; Li J; Lu C; Crittenden J Environ Sci Technol; 2021 Mar; 55(5):2743-2766. PubMed ID: 33569951 [TBL] [Abstract][Full Text] [Related]
19. Review on magnetic adsorbents for removal of elemental mercury from coal combustion flue gas. Zhang L; Zheng Y; Li G; Gao J; Li R; Yue T Environ Res; 2024 Feb; 243():117734. PubMed ID: 38029827 [TBL] [Abstract][Full Text] [Related]
20. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases. Lee CW; Srivastava RK; Ghorishi SB; Karwowski J; Hastings TW; Hirschi JC J Air Waste Manag Assoc; 2006 May; 56(5):643-9. PubMed ID: 16739801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]