BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33334860)

  • 1. Widespread labeling and genomic editing of the fetal central nervous system by
    Hu S; Yang T; Wang Y
    Development; 2021 Jan; 148(2):. PubMed ID: 33334860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced CNS transduction from AAV.PHP.eB infusion into the cisterna magna of older adult rats compared to AAV9.
    Chatterjee D; Marmion DJ; McBride JL; Manfredsson FP; Butler D; Messer A; Kordower JH
    Gene Ther; 2022 Jun; 29(6):390-397. PubMed ID: 33753910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apolipoprotein E, low-density lipoprotein receptor, and immune cells control blood-brain barrier penetration by AAV-PHP.eB in mice.
    Xie BS; Wang X; Pan YH; Jiang G; Feng JF; Lin Y
    Theranostics; 2021; 11(3):1177-1191. PubMed ID: 33391529
    [No Abstract]   [Full Text] [Related]  

  • 4. Combination of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development.
    Cheng M; Jin X; Mu L; Wang F; Li W; Zhong X; Liu X; Shen W; Liu Y; Zhou Y
    J Neurosci Res; 2016 Sep; 94(9):814-24. PubMed ID: 27317429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 6. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNS Transduction Benefits of AAV-PHP.eB over AAV9 Are Dependent on Administration Route and Mouse Strain.
    Mathiesen SN; Lock JL; Schoderboeck L; Abraham WC; Hughes SM
    Mol Ther Methods Clin Dev; 2020 Dec; 19():447-458. PubMed ID: 33294493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. More expansive gene transfer to the rat CNS: AAV PHP.EB vector dose-response and comparison to AAV PHP.B.
    Dayton RD; Grames MS; Klein RL
    Gene Ther; 2018 Aug; 25(5):392-400. PubMed ID: 30013186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered CRISPR Systems for Next Generation Gene Therapies.
    Pineda M; Moghadam F; Ebrahimkhani MR; Kiani S
    ACS Synth Biol; 2017 Sep; 6(9):1614-1626. PubMed ID: 28558198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AAV-PHP.B Administration Results in a Differential Pattern of CNS Biodistribution in Non-human Primates Compared with Mice.
    Liguore WA; Domire JS; Button D; Wang Y; Dufour BD; Srinivasan S; McBride JL
    Mol Ther; 2019 Nov; 27(11):2018-2037. PubMed ID: 31420242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9.
    Byambaa S; Uosaki H; Hara H; Nagao Y; Abe T; Shibata H; Nureki O; Ohmori T; Hanazono Y
    Exp Anim; 2020 Apr; 69(2):189-198. PubMed ID: 31801915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice.
    Ohmori T; Nagao Y; Mizukami H; Sakata A; Muramatsu SI; Ozawa K; Tominaga SI; Hanazono Y; Nishimura S; Nureki O; Sakata Y
    Sci Rep; 2017 Jun; 7(1):4159. PubMed ID: 28646206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of microsatellite instability in CRISPR/Cas9 editing mice.
    Huo X; Du Y; Lu J; Guo M; Li Z; Zhang S; Li X; Chen Z; Du X
    Mutat Res; 2017 Mar; 797-799():1-6. PubMed ID: 28284774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo.
    Hung SS; Chrysostomou V; Li F; Lim JK; Wang JH; Powell JE; Tu L; Daniszewski M; Lo C; Wong RC; Crowston JG; Pébay A; King AE; Bui BV; Liu GS; Hewitt AW
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3470-6. PubMed ID: 27367513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic gene editing: delivery and regulatory perspectives.
    Shim G; Kim D; Park GT; Jin H; Suh SK; Oh YK
    Acta Pharmacol Sin; 2017 Jun; 38(6):738-753. PubMed ID: 28392568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and epigenetic editing in
nervous system
.
    Day JJ
    Dialogues Clin Neurosci; 2019 Dec; 21(4):359-368. PubMed ID: 31949403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Livestock Gene Editing by One-step Embryo Manipulation.
    Navarro-Serna S; Vilarino M; Park I; Gadea J; Ross PJ
    J Equine Vet Sci; 2020 Jun; 89():103025. PubMed ID: 32563448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain.
    Matsuzaki Y; Konno A; Mochizuki R; Shinohara Y; Nitta K; Okada Y; Hirai H
    Neurosci Lett; 2018 Feb; 665():182-188. PubMed ID: 29175632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.