BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 33335020)

  • 1. Microbial single-cell RNA sequencing by split-pool barcoding.
    Kuchina A; Brettner LM; Paleologu L; Roco CM; Rosenberg AB; Carignano A; Kibler R; Hirano M; DePaolo RW; Seelig G
    Science; 2021 Feb; 371(6531):. PubMed ID: 33335020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene.
    Sá-Nogueira I; Mota LJ
    J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-Seq reveals transcriptomic interactions of Bacillus subtilis natto and Bifidobacterium animalis subsp. lactis in whole soybean solid-state co-fermentation.
    Wang HK; Ng YK; Koh E; Yao L; Chien AS; Lin HX; Lee YK
    Food Microbiol; 2015 Oct; 51():25-32. PubMed ID: 26187824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional activity around bacterial cell death reveals molecular biomarkers for cell viability.
    Kort R; Keijser BJ; Caspers MP; Schuren FH; Montijn R
    BMC Genomics; 2008 Dec; 9():590. PubMed ID: 19061518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in
    Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improve uridine production by modifying related metabolic pathways in Bacillus subtilis.
    Zhang X; Wang C; Liu L; Ban R
    Biotechnol Lett; 2020 Apr; 42(4):551-555. PubMed ID: 31993847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion.
    Deuerling E; Mogk A; Richter C; Purucker M; Schumann W
    Mol Microbiol; 1997 Mar; 23(5):921-33. PubMed ID: 9076729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The citrulline biosynthetic operon, argC-F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by Spo0A.
    O'Reilly M; Woodson K; Dowds BC; Devine KM
    Mol Microbiol; 1994 Jan; 11(1):87-98. PubMed ID: 7511775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon.
    Ludwig H; Homuth G; Schmalisch M; Dyka FM; Hecker M; Stülke J
    Mol Microbiol; 2001 Jul; 41(2):409-22. PubMed ID: 11489127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes.
    Schulz A; Schumann W
    J Bacteriol; 1996 Feb; 178(4):1088-93. PubMed ID: 8576042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations.
    Shin D; Lee W; Lee JH; Bang D
    Sci Adv; 2019 May; 5(5):eaav2249. PubMed ID: 31106268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a chimeric proU operon in a subtilin-producing mutant of Bacillus subtilis 168.
    Lin Y; Hansen JN
    J Bacteriol; 1995 Dec; 177(23):6874-80. PubMed ID: 7592481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SsrA-SmpB ribosome rescue system is important for growth of Bacillus subtilis at low and high temperatures.
    Shin JH; Price CW
    J Bacteriol; 2007 May; 189(10):3729-37. PubMed ID: 17369301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis.
    Zuber U; Schumann W
    J Bacteriol; 1994 Mar; 176(5):1359-63. PubMed ID: 8113175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PrcR, a PucR-type transcriptional activator, is essential for proline utilization and mediates proline-responsive expression of the proline utilization operon putBCP in Bacillus subtilis.
    Huang SC; Lin TH; Shaw GC
    Microbiology (Reading); 2011 Dec; 157(Pt 12):3370-3377. PubMed ID: 21964733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina.
    Dharmat R; Kim S; Li Y; Chen R
    Methods Mol Biol; 2020; 2092():159-186. PubMed ID: 31786788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Cell Transcriptome Analysis of T Cells.
    Van Der Byl W; Rizzetto S; Samir J; Cai C; Eltahla AA; Luciani F
    Methods Mol Biol; 2019; 2048():155-205. PubMed ID: 31396939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-transcriptional regulation of the Bacillus subtilis dnaK operon.
    Homuth G; Mogk A; Schumann W
    Mol Microbiol; 1999 Jun; 32(6):1183-97. PubMed ID: 10383760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell biology. Reconfiguring regulation.
    Chalancon G; Kruse K; Babu MM
    Science; 2012 Mar; 335(6072):1050-1. PubMed ID: 22383834
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.