These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33335061)

  • 81. Kilonovae.
    Metzger BD
    Living Rev Relativ; 2020; 23(1):1. PubMed ID: 31885490
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Ranking Love Numbers for the Neutron Star Equation of State: The Need for Third-Generation Detectors.
    Pacilio C; Maselli A; Fasano M; Pani P
    Phys Rev Lett; 2022 Mar; 128(10):101101. PubMed ID: 35333071
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Dark Energy After GW170817: Dead Ends and the Road Ahead.
    Ezquiaga JM; Zumalacárregui M
    Phys Rev Lett; 2017 Dec; 119(25):251304. PubMed ID: 29303304
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Astrophysical Equation-of-State Constraints on the Color-Superconducting Gap.
    Kurkela A; Rajagopal K; Steinhorst R
    Phys Rev Lett; 2024 Jun; 132(26):262701. PubMed ID: 38996309
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Demonstrating the feasibility of probing the neutron-star equation of state with second-generation gravitational-wave detectors.
    Del Pozzo W; Li TG; Agathos M; Van Den Broeck C; Vitale S
    Phys Rev Lett; 2013 Aug; 111(7):071101. PubMed ID: 23992055
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Degeneracy in the Inference of Phase Transitions in the Neutron Star Equation of State from Gravitational Wave Data.
    Raithel CA; Most ER
    Phys Rev Lett; 2023 May; 130(20):201403. PubMed ID: 37267559
    [TBL] [Abstract][Full Text] [Related]  

  • 87. High-energy astrophysics and the search for sources of gravitational waves.
    O'Brien PT; Evans P
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661981
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor.
    Zhang BB; Zhang B; Sun H; Lei WH; Gao H; Li Y; Shao L; Zhao Y; Hu YD; Lü HJ; Wu XF; Fan XL; Wang G; Castro-Tirado AJ; Zhang S; Yu BY; Cao YY; Liang EW
    Nat Commun; 2018 Jan; 9(1):447. PubMed ID: 29386633
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Precision cosmology from future lensed gravitational wave and electromagnetic signals.
    Liao K; Fan XL; Ding X; Biesiada M; Zhu ZH
    Nat Commun; 2017 Oct; 8(1):1148. PubMed ID: 29074973
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Measuring neutron-star radii with gravitational-wave detectors.
    Faber JA; Grandclément P; Rasio FA; Taniguchi K
    Phys Rev Lett; 2002 Dec; 89(23):231102. PubMed ID: 12484994
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Identifying a First-Order Phase Transition in Neutron-Star Mergers through Gravitational Waves.
    Bauswein A; Bastian NF; Blaschke DB; Chatziioannou K; Clark JA; Fischer T; Oertel M
    Phys Rev Lett; 2019 Feb; 122(6):061102. PubMed ID: 30822078
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A radio counterpart to a neutron star merger.
    Hallinan G; Corsi A; Mooley KP; Hotokezaka K; Nakar E; Kasliwal MM; Kaplan DL; Frail DA; Myers ST; Murphy T; De K; Dobie D; Allison JR; Bannister KW; Bhalerao V; Chandra P; Clarke TE; Giacintucci S; Ho AYQ; Horesh A; Kassim NE; Kulkarni SR; Lenc E; Lockman FJ; Lynch C; Nichols D; Nissanke S; Palliyaguru N; Peters WM; Piran T; Rana J; Sadler EM; Singer LP
    Science; 2017 Dec; 358(6370):1579-1583. PubMed ID: 29038372
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach.
    Hinderer T; Taracchini A; Foucart F; Buonanno A; Steinhoff J; Duez M; Kidder LE; Pfeiffer HP; Scheel MA; Szilagyi B; Hotokezaka K; Kyutoku K; Shibata M; Carpenter CW
    Phys Rev Lett; 2016 May; 116(18):181101. PubMed ID: 27203312
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Probing the interior of neutron stars with gravitational waves.
    Tsui LK; Leung PT
    Phys Rev Lett; 2005 Oct; 95(15):151101. PubMed ID: 16241711
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Effects of hyperons in binary neutron star mergers.
    Sekiguchi Y; Kiuchi K; Kyutoku K; Shibata M
    Phys Rev Lett; 2011 Nov; 107(21):211101. PubMed ID: 22181867
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source.
    Coulter DA; Foley RJ; Kilpatrick CD; Drout MR; Piro AL; Shappee BJ; Siebert MR; Simon JD; Ulloa N; Kasen D; Madore BF; Murguia-Berthier A; Pan YC; Prochaska JX; Ramirez-Ruiz E; Rest A; Rojas-Bravo C
    Science; 2017 Dec; 358(6370):1556-1558. PubMed ID: 29038368
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Convective Excitation of Inertial Modes in Binary Neutron Star Mergers.
    De Pietri R; Feo A; Font JA; Löffler F; Maione F; Pasquali M; Stergioulas N
    Phys Rev Lett; 2018 Jun; 120(22):221101. PubMed ID: 29906154
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Bayesian Inference for Gravitational Waves from Binary Neutron Star Mergers in Third Generation Observatories.
    Smith R; Borhanian S; Sathyaprakash B; Hernandez Vivanco F; Field SE; Lasky P; Mandel I; Morisaki S; Ottaway D; Slagmolen BJJ; Thrane E; Töyrä D; Vitale S
    Phys Rev Lett; 2021 Aug; 127(8):081102. PubMed ID: 34477440
    [TBL] [Abstract][Full Text] [Related]  

  • 99. NonPrimordial Solar Mass Black Holes.
    Kouvaris C; Tinyakov P; Tytgat MHG
    Phys Rev Lett; 2018 Nov; 121(22):221102. PubMed ID: 30547602
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Electromagnetic Chirps from Neutron Star-Black Hole Mergers.
    Schnittman JD; Dal Canton T; Camp J; Tsang D; Kelly BJ
    Astrophys J; 2018; 853(2):. PubMed ID: 31708583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.