BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 33335148)

  • 21. Fabrication of microfluidic devices containing patterned microwell arrays.
    Henley WH; Dennis PJ; Ramsey JM
    Anal Chem; 2012 Feb; 84(3):1776-80. PubMed ID: 22242542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid Prototyping of Thermoplastic Microfluidic Devices.
    Novak R; Ng CF; Ingber DE
    Methods Mol Biol; 2018; 1771():161-170. PubMed ID: 29633212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of PDMS Microchannels Using Horizontally or Vertically Formed 3D-Printed Molds by Digital Light Projection.
    Han DH; Oh U; Park JK
    ACS Omega; 2023 May; 8(21):19128-19136. PubMed ID: 37273587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips.
    Kotz F; Helmer D; Rapp BE
    Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and Development of a Three-Dimensionally Printed Microscope Mask Alignment Adapter for the Fabrication of Multilayer Microfluidic Devices.
    Garcia CR; Ding Z; Garza HC; Li W
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33554971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Non-Sacrificial 3D Printing Process for Fabricating Integrated Micro/Mesoscale Molds.
    Ghaznavi A; Xu J; Hara SA
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An affordable 3D-printed positioner fixture improves the resolution of conventional milling for easy prototyping of acrylic microfluidic devices.
    Guevara-Pantoja PE; Chavez-Pineda OG; Solis-Serrano AM; Garcia-Cordero JL; Caballero-Robledo GA
    Lab Chip; 2020 Aug; 20(17):3179-3186. PubMed ID: 32729599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Research on Integrated 3D Printing of Microfluidic Chips.
    Wu C; Sun J; Yin B
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multicellular Cell Seeding on a Chip: New Design and Optimization towards Commercialization.
    Nguyen T; Ho L; Moinuddin SM; Sarkar T; Saha D; Ahsan F
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36004984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-Dimensional Printed Stamps for the Fabrication of Patterned Microwells and High-Throughput Production of Homogeneous Cell Spheroids.
    Gonzalez-Fernandez T; Tenorio AJ; Leach JK
    3D Print Addit Manuf; 2020 Jun; 7(3):139-147. PubMed ID: 32855996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate.
    Kotz F; Mader M; Dellen N; Risch P; Kick A; Helmer D; Rapp BE
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32961823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Milling Positive Master for Polydimethylsiloxane Microfluidic Devices: The Microfabrication and Roughness Issues.
    Zhou Z; Chen D; Wang X; Jiang J
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of Concave Microwells and Their Applications in Micro-Tissue Engineering: A Review.
    Guo W; Chen Z; Feng Z; Li H; Zhang M; Zhang H; Cui X
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mask-free fabrication of a versatile microwell chip for multidimensional cellular analysis and drug screening.
    Yang W; Yu H; Li G; Wei F; Wang Y; Liu L
    Lab Chip; 2017 Dec; 17(24):4243-4252. PubMed ID: 29152631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering 3D Printed Microfluidic Chips for the Fabrication of Nanomedicines.
    Kara A; Vassiliadou A; Ongoren B; Keeble W; Hing R; Lalatsa A; Serrano DR
    Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leaf-templated, microwell-integrated microfluidic chips for high-throughput cell experiments.
    Mao M; He J; Lu Y; Li X; Li T; Zhou W; Li D
    Biofabrication; 2018 Feb; 10(2):025008. PubMed ID: 29350200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.