BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33335149)

  • 1. Heat stress elicits remodeling in the anther lipidome of peanut.
    Zoong Lwe ZS; Welti R; Anco D; Naveed S; Rustgi S; Narayanan S
    Sci Rep; 2020 Dec; 10(1):22163. PubMed ID: 33335149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in wheat pollen lipidome during high day and night temperature stress.
    Narayanan S; Prasad PVV; Welti R
    Plant Cell Environ; 2018 Aug; 41(8):1749-1761. PubMed ID: 29377219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in the leaf lipidome of Brassica carinata under high-temperature stress.
    Zoong Lwe Z; Sah S; Persaud L; Li J; Gao W; Raja Reddy K; Narayanan S
    BMC Plant Biol; 2021 Sep; 21(1):404. PubMed ID: 34488625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid modulation contributes to heat stress adaptation in peanut.
    Spivey WW; Rustgi S; Welti R; Roth MR; Burow MD; Bridges WC; Narayanan S
    Front Plant Sci; 2023; 14():1299371. PubMed ID: 38164249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated analysis of the rice transcriptome and lipidome reveals lipid metabolism plays a central role in rice cold tolerance.
    Liu H; Xin W; Wang Y; Zhang D; Wang J; Zheng H; Yang L; Nie S; Zou D
    BMC Plant Biol; 2022 Mar; 22(1):91. PubMed ID: 35232394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations.
    Narayanan S; Tamura PJ; Roth MR; Prasad PV; Welti R
    Plant Cell Environ; 2016 Apr; 39(4):787-803. PubMed ID: 26436679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipidomics-based insights into the physiological mechanism of wheat in response to heat stress.
    Hu H; Jia Y; Hao Z; Ma G; Xie Y; Wang C; Ma D
    Plant Physiol Biochem; 2023 Dec; 205():108190. PubMed ID: 37988880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipidomics-Assisted GWAS (lGWAS) Approach for Improving High-Temperature Stress Tolerance of Crops.
    Pranneshraj V; Sangha MK; Djalovic I; Miladinovic J; Djanaguiraman M
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012660
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Shi H; Yu Y; Gu R; Feng C; Fu Y; Yu X; Yuan J; Sun Q; Ke Y
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32260292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Lipidomic Analysis Reveals Heat Stress Responses of Two Soybean Genotypes Differing in Temperature Sensitivity.
    Narayanan S; Zoong-Lwe ZS; Gandhi N; Welti R; Fallen B; Smith JR; Rustgi S
    Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32260392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated Analysis of Comparative Lipidomics and Proteomics Reveals the Dynamic Changes of Lipid Molecular Species in High-Oleic Acid Peanut Seed.
    Liu H; Hong Y; Lu Q; Li H; Gu J; Ren L; Deng L; Zhou B; Chen X; Liang X
    J Agric Food Chem; 2020 Jan; 68(1):426-438. PubMed ID: 31855429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OeFAD8, OeLIP and OeOSM expression and activity in cold-acclimation of Olea europaea, a perennial dicot without winter-dormancy.
    D'Angeli S; Matteucci M; Fattorini L; Gismondi A; Ludovici M; Canini A; Altamura MM
    Planta; 2016 May; 243(5):1279-96. PubMed ID: 26919986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity.
    Paulucci NS; Gallarato LA; Reguera YB; Vicario JC; Cesari AB; GarcĂ­a de Lema MB; Dardanelli MS
    Microbiol Res; 2015 Apr; 173():1-9. PubMed ID: 25801965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suboptimal Temperature Acclimation Affects Kennedy Pathway Gene Expression, Lipidome and Metabolite Profile of
    Gill SS; Willette S; Dungan B; Jarvis JM; Schaub T; VanLeeuwen DM; St Hilaire R; Holguin FO
    Mar Drugs; 2018 Nov; 16(11):. PubMed ID: 30388843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Advanced Lipid Metabolism System Revealed by Transcriptomic and Lipidomic Analyses Plays a Central Role in Peanut Cold Tolerance.
    Zhang H; Jiang C; Ren J; Dong J; Shi X; Zhao X; Wang X; Wang J; Zhong C; Zhao S; Liu X; Gao S; Yu H
    Front Plant Sci; 2020; 11():1110. PubMed ID: 32849684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold acclimation triggers lipidomic and metabolic adjustments in the spotted wing drosophila
    Enriquez T; Colinet H
    Am J Physiol Regul Integr Comp Physiol; 2019 Jun; 316(6):R751-R763. PubMed ID: 30943049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes.
    Kottapalli KR; Rakwal R; Shibato J; Burow G; Tissue D; Burke J; Puppala N; Burow M; Payton P
    Plant Cell Environ; 2009 Apr; 32(4):380-407. PubMed ID: 19143990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insect cold-tolerance and lipidome: Membrane lipid composition of two chironomid species differently adapted to cold.
    Trenti F; Sandron T; Guella G; Lencioni V
    Cryobiology; 2022 Jun; 106():84-90. PubMed ID: 35317992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of ambient temperature-responsive transcriptome in shoot apical meristem of heat-tolerant and heat-sensitive broccoli inbred lines during floral head formation.
    Lin CW; Fu SF; Liu YJ; Chen CC; Chang CH; Yang YW; Huang HJ
    BMC Plant Biol; 2019 Jan; 19(1):3. PubMed ID: 30606114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive and comparative lipidome analysis of Vitis vinifera L. cv. Pinot Noir and Japanese indigenous V. vinifera L. cv. Koshu grape berries.
    Arita K; Honma T; Suzuki S
    PLoS One; 2017; 12(10):e0186952. PubMed ID: 29053756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.