These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33335152)

  • 21. 3D printed macroporous scaffolds of PCL and inulin-g-P(D,L)LA for bone tissue engineering applications.
    Tommasino C; Auriemma G; Sardo C; Alvarez-Lorenzo C; Garofalo E; Morello S; Falcone G; Aquino RP
    Int J Pharm; 2023 Jun; 641():123093. PubMed ID: 37268029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications.
    Rindone AN; Nyberg E; Grayson WL
    Methods Mol Biol; 2018; 1577():209-226. PubMed ID: 28493213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D-printed cryomilled poly(ε-caprolactone)/graphene composite scaffolds for bone tissue regeneration.
    Dias D; Vale AC; Cunha EPF; C Paiva M; Reis RL; Vaquette C; Alves NM
    J Biomed Mater Res B Appl Biomater; 2021 Jul; 109(7):961-972. PubMed ID: 33241654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering.
    Cengiz IF; Maia FR; da Silva Morais A; Silva-Correia J; Pereira H; Canadas RF; Espregueira-Mendes J; Kwon IK; Reis RL; Oliveira JM
    Biofabrication; 2020 Mar; 12(2):025028. PubMed ID: 32069441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanically suitable and osteoinductive 3D-printed composite scaffolds with hydroxyapatite nanoparticles having diverse morphologies for bone tissue engineering.
    Wojasiński M; Podgórski R; Kowalczyk P; Latocha J; Prystupiuk K; Janowska O; Gierlotka S; Staniszewska M; Ciach T; Sobieszuk P
    J Biomed Mater Res B Appl Biomater; 2024 Jun; 112(6):e35409. PubMed ID: 38786580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry.
    Olubamiji AD; Izadifar Z; Si JL; Cooper DM; Eames BF; Chen DX
    Biofabrication; 2016 Jun; 8(2):025020. PubMed ID: 27328736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physical, electrochemical and biological evaluations of spin-coated ε-polycaprolactone thin films containing alumina/graphene/carbonated hydroxyapatite/titania for tissue engineering applications.
    Afifi M; Ahmed MK; Fathi AM; Uskoković V
    Int J Pharm; 2020 Jul; 585():119502. PubMed ID: 32505577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-Dimensional Printing of Customized Scaffolds with Polycaprolactone-Silk Fibroin Composites and Integration of Gingival Tissue-Derived Stem Cells for Personalized Bone Therapy.
    Bojedla SSR; Yeleswarapu S; Alwala AM; Nikzad M; Masood SH; Riza S; Pati F
    ACS Appl Bio Mater; 2022 Sep; 5(9):4465-4479. PubMed ID: 35994743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrospinning of Scaffolds from the Polycaprolactone/Polyurethane Composite with Graphene Oxide for Skin Tissue Engineering.
    Sadeghianmaryan A; Karimi Y; Naghieh S; Alizadeh Sardroud H; Gorji M; Chen X
    Appl Biochem Biotechnol; 2020 Jun; 191(2):567-578. PubMed ID: 31823274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering.
    Du X; Wei D; Huang L; Zhu M; Zhang Y; Zhu Y
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109731. PubMed ID: 31349472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation.
    Gonçalves EM; Oliveira FJ; Silva RF; Neto MA; Fernandes MH; Amaral M; Vallet-Regí M; Vila M
    J Biomed Mater Res B Appl Biomater; 2016 Aug; 104(6):1210-9. PubMed ID: 26089195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of poly (trimethylene carbonate)/reduced graphene oxide-graft-poly (trimethylene carbonate) composite scaffolds for nerve regeneration.
    Guo Z; Liang J; Poot AA; Grijpma DW; Chen H
    Biomed Mater; 2019 Feb; 14(2):024104. PubMed ID: 30665200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extrusion 3D-printing and characterization of poly(caprolactone fumarate) for bone regeneration applications.
    Gaihre B; Potes MDA; Liu X; Tilton M; Camilleri E; Rezaei A; Serdiuk V; Park S; Lucien F; Terzic A; Lu L
    J Biomed Mater Res A; 2024 May; 112(5):672-684. PubMed ID: 37971074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells].
    Xu Y; Wei B; Zhou J; Yao Q; Wang L; Na J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Feb; 32(2):215-222. PubMed ID: 29806415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold.
    Kumar S; Chatterjee K
    Nanoscale; 2015 Feb; 7(5):2023-33. PubMed ID: 25553731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Printing tissue-engineered scaffolds made of polycaprolactone and nano-hydroxyapatite with mechanical properties appropriate for trabecular bone substitutes.
    Yazdanpanah Z; Sharma NK; Raquin A; Cooper DML; Chen X; Johnston JD
    Biomed Eng Online; 2023 Jul; 22(1):73. PubMed ID: 37474951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.
    Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A
    J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of highly ordered willemite/PCL bone scaffolds by 3D printing: Nanostructure effects on compressive strength and in vitro behavior.
    Yahay Z; Moein Farsani N; Mirhadi M; Tavangarian F
    J Mech Behav Biomed Mater; 2023 Aug; 144():105996. PubMed ID: 37392603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D- Printed Poly(ε-caprolactone) Scaffold Integrated with Cell-laden Chitosan Hydrogels for Bone Tissue Engineering.
    Dong L; Wang SJ; Zhao XR; Zhu YF; Yu JK
    Sci Rep; 2017 Oct; 7(1):13412. PubMed ID: 29042614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.