These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33335242)

  • 1. Deposited ultra-thin titanium nitride nanorod array as a plasmonic near-perfect light absorber.
    Jen YJ; Yang KB; Lin PC; Chung MH
    Sci Rep; 2020 Dec; 10(1):22269. PubMed ID: 33335242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber.
    Jen YJ; Huang YJ; Liu WC; Lin YW
    Sci Rep; 2017 Jan; 7():39791. PubMed ID: 28045135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Obliquely Deposited Titanium Nitride Nanorod Arrays as Surface-Enhanced Raman Scattering Substrates.
    Jen YJ; Lin MJ; Cheang HL; Chan TL
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31684022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband Perfect Absorber Based on TiN-Nanocone Metasurface.
    Huo D; Zhang J; Wang Y; Wang C; Su H; Zhao H
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 29966378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber.
    Jen YJ; Liu WC; Chen TK; Lin SW; Jhang YC
    Sci Rep; 2017 Jun; 7(1):3076. PubMed ID: 28596611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quad-Band Plasmonic Perfect Absorber for Visible Light with a Patchwork of Silicon Nanorod Resonators.
    Cao C; Cheng Y
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30321996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-broadband metamaterial absorber based on cross-shaped TiN resonators.
    Mehrabi S; Rezaei MH; Zarifkar A
    J Opt Soc Am A Opt Image Sci Vis; 2020 Apr; 37(4):697-704. PubMed ID: 32400557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband Absorption Based on Thin Refractory Titanium Nitride Patterned Film Metasurface.
    Huo D; Ma X; Su H; Wang C; Zhao H
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capping metallic nanohelixes with SiO
    Jen YJ; Yu CL; Lin MJ; Hsiao CY
    Opt Express; 2018 Aug; 26(17):21510-21517. PubMed ID: 30130857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of high order plasmonic modes on ceramic nanodisks.
    Gosciniak J; Justice J; Khan U; Modreanu M; Corbett B
    Opt Express; 2017 Mar; 25(5):5244-5254. PubMed ID: 28380788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films.
    Murai S; Fujita K; Daido Y; Yasuhara R; Kamakura R; Tanaka K
    Opt Express; 2016 Jan; 24(2):1143-53. PubMed ID: 26832498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-5 µm mid-infrared broadband absorbers composed of layered ITO nanorod arrays with high visible light transmittance.
    Li L; Cui Q; Zhang YJ; Li C; Gu TC; Wu Y; Han CQ; Yan CC
    Opt Express; 2022 Jun; 30(13):23840-23851. PubMed ID: 36225057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multipole Resonance in Arrays of Diamond Dielectric: A Metamaterial Perfect Absorber in the Visible Regime.
    Li C; Fan H; Dai Q; Wei Z; Lan S; Liu H
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong light coupling effect for a glancing-deposited silver nanorod array in the Kretschmann configuration.
    Jen YJ; Liu WC; Chao JH; Huang JW; Chang YT
    Nanoscale Res Lett; 2014; 9(1):567. PubMed ID: 25352769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-broadband perfect absorber using triple-layer nanofilm in a long-wave near-infrared regime.
    Kuang K; Wang Q; Yuan X; Yu L; Liang Y; Zhang Y; Peng W
    Appl Opt; 2022 Sep; 61(26):7706-7712. PubMed ID: 36256371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber.
    Hubarevich A; Kukhta A; Demir HV; Sun X; Wang H
    Opt Express; 2015 Apr; 23(8):9753-61. PubMed ID: 25969014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals.
    Li H; Niu J; Zhang C; Niu G; Ye X; Xie C
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32204359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms.
    Fann CH; Zhang J; ElKabbash M; Donaldson WR; Michael Campbell E; Guo C
    Opt Express; 2019 Sep; 27(20):27917-27926. PubMed ID: 31684552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.