These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33335534)

  • 1. Whole-Genome Sequencing: An Effective Strategy for Insertion Information Analysis of Foreign Genes in Transgenic Plants.
    Wang XJ; Jiao Y; Ma S; Yang JT; Wang ZX
    Front Plant Sci; 2020; 11():573871. PubMed ID: 33335534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Genomic Insertion and Flanking Sequence of G2-EPSPS and GAT Transgenes in Soybean Using Whole Genome Sequencing Method.
    Guo B; Guo Y; Hong H; Qiu LJ
    Front Plant Sci; 2016; 7():1009. PubMed ID: 27462336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient identification of genomic insertions and flanking regions through whole-genome sequencing in three transgenic soybean events.
    Niu L; He H; Zhang Y; Yang J; Zhao Q; Xing G; Zhong X; Yang X
    Transgenic Res; 2021 Feb; 30(1):1-9. PubMed ID: 33393017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and performance evaluation of whole-genome sequencing with paired-end and mate-pair strategies in molecular characterization of GM crops: One GM rice 114-7-2 line as an example.
    Zhang H; Zhang Y; Xu W; Li R; Zhang D; Yang L
    Food Chem (Oxf); 2022 Jul; 4():100061. PubMed ID: 35415698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A paired-end whole-genome sequencing approach enables comprehensive characterization of transgene integration in rice.
    Xu W; Zhang H; Zhang Y; Shen P; Li X; Li R; Yang L
    Commun Biol; 2022 Jul; 5(1):667. PubMed ID: 35790849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data.
    Park D; Park SH; Ban YW; Kim YS; Park KC; Kim NS; Kim JK; Choi IY
    BMC Biotechnol; 2017 Aug; 17(1):67. PubMed ID: 28810845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency to Discovery Transgenic Loci in GM Rice Using Next Generation Sequencing Whole Genome Re-sequencing.
    Park D; Kim D; Jang G; Lim J; Shin YJ; Kim J; Seo MS; Park SH; Kim JK; Kwon TH; Choi IY
    Genomics Inform; 2015 Sep; 13(3):81-5. PubMed ID: 26523132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-genome resequencing using next-generation and Nanopore sequencing for molecular characterization of T-DNA integration in transgenic poplar 741.
    Chen X; Dong Y; Huang Y; Fan J; Yang M; Zhang J
    BMC Genomics; 2021 May; 22(1):329. PubMed ID: 33957867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of genomic insertion and flanking sequences of the transgenic drought-tolerant maize line "SbSNAC1-382" using the single-molecule real-time (SMRT) sequencing method.
    Zeng T; Zhang D; Li Y; Li C; Liu X; Shi Y; Song Y; Li Y; Wang T
    PLoS One; 2020; 15(4):e0226455. PubMed ID: 32275664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive analysis of the molecular characterization of GM rice G6H1 using a paired-end sequencing approach.
    Zhang Y; Zhang H; Qu Z; Zhang X; Cui J; Wang C; Yang L
    Food Chem; 2020 Mar; 309():125760. PubMed ID: 31787392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of T-DNA Insertion Site and Flanking Sequence of a Genetically Modified Maize Event IE09S034 Using Next-Generation Sequencing Technology.
    Siddique K; Wei J; Li R; Zhang D; Shi J
    Mol Biotechnol; 2019 Sep; 61(9):694-702. PubMed ID: 31256331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of T-DNA- Xa21 loci and bacterial blight resistance effects of the transgene Xa21 in transgenic rice.
    Zhai W; Chen C; Zhu X; Chen X; Zhang D; Li X; Zhu L
    Theor Appl Genet; 2004 Aug; 109(3):534-42. PubMed ID: 15088086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LIFE-Seq: a universal Large Integrated DNA Fragment Enrichment Sequencing strategy for deciphering the transgene integration of genetically modified organisms.
    Zhang H; Li R; Guo Y; Zhang Y; Zhang D; Yang L
    Plant Biotechnol J; 2022 May; 20(5):964-976. PubMed ID: 34990051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Combined Methods of Genetic Mapping and Nanopore-Based Sequencing Technology to Analyze the Insertion Positions of
    Peng C; Mei Y; Ding L; Wang X; Chen X; Wang J; Xu J
    Front Plant Sci; 2021; 12():690951. PubMed ID: 34394143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive molecular characterization of a transgenic pig expressing hCD46 gene.
    Wang Q; Shi N; Shang Y; Liu X; Fu W; Zhao Y; Pan D; Xu W; Lin X
    Gene; 2017 Aug; 626():376-385. PubMed ID: 28578022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics.
    Sallaud C; Gay C; Larmande P; Bès M; Piffanelli P; Piégu B; Droc G; Regad F; Bourgeois E; Meynard D; Périn C; Sabau X; Ghesquière A; Glaszmann JC; Delseny M; Guiderdoni E
    Plant J; 2004 Aug; 39(3):450-64. PubMed ID: 15255873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular identification of one event of Ds excision and re-insertion at two loci in rice genome.
    Zhao D; Qiao Z; Cheng X; Wang J; Jiao C; Sun B
    Yi Chuan; 2014 Dec; 36(12):1249-55. PubMed ID: 25487270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated DNA walking system to characterize a broad spectrum of GMOs in food/feed matrices.
    Fraiture MA; Herman P; Lefèvre L; Taverniers I; De Loose M; Deforce D; Roosens NH
    BMC Biotechnol; 2015 Aug; 15():76. PubMed ID: 26272331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and Detailed Characterization of Transgene Insertion Sites in Genetically Modified Plants via Nanopore Sequencing.
    Giraldo PA; Shinozuka H; Spangenberg GC; Smith KF; Cogan NOI
    Front Plant Sci; 2020; 11():602313. PubMed ID: 33613582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of flanking sequences reveals that Tnt1 insertion is positively correlated with gene methylation in Medicago truncatula.
    Sun L; Gill US; Nandety RS; Kwon S; Mehta P; Dickstein R; Udvardi MK; Mysore KS; Wen J
    Plant J; 2019 Jun; 98(6):1106-1119. PubMed ID: 30776165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.