These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 33335536)

  • 1. High Temperature and Elevated Carbon Dioxide Modify Berry Composition of Different Clones of Grapevine (
    Arrizabalaga-Arriazu M; Gomès E; Morales F; Irigoyen JJ; Pascual I; Hilbert G
    Front Plant Sci; 2020; 11():603687. PubMed ID: 33335536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth performance and carbon partitioning of grapevine Tempranillo clones under simulated climate change scenarios: Elevated CO
    Arrizabalaga-Arriazu M; Morales F; Irigoyen JJ; Hilbert G; Pascual I
    J Plant Physiol; 2020 Sep; 252():153226. PubMed ID: 32763650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tempranillo clones differ in the response of berry sugar and anthocyanin accumulation to elevated temperature.
    Arrizabalaga M; Morales F; Oyarzun M; Delrot S; Gomès E; Irigoyen JJ; Hilbert G; Pascual I
    Plant Sci; 2018 Feb; 267():74-83. PubMed ID: 29362101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of 2100-Projected Air Temperature, Carbon Dioxide, and Water Scarcity on Grape Primary and Secondary Metabolites of Different
    Arrizabalaga-Arriazu M; Gomès E; Morales F; Irigoyen JJ; Pascual I; Hilbert G
    J Agric Food Chem; 2021 Jun; 69(22):6172-6185. PubMed ID: 34033469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is vegetative area, photosynthesis, or grape C uploading involved in the climate change-related grape sugar/anthocyanin decoupling in Tempranillo?
    Salazar-Parra C; Aranjuelo I; Pascual I; Aguirreolea J; Sánchez-Díaz M; Irigoyen JJ; Araus JL; Morales F
    Photosynth Res; 2018 Oct; 138(1):115-128. PubMed ID: 29980966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates.
    Martínez-Lüscher J; Morales F; Sánchez-Díaz M; Delrot S; Aguirreolea J; Gomès E; Pascual I
    Plant Sci; 2015 Jul; 236():168-76. PubMed ID: 26025530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses.
    Salazar-Parra C; Aranjuelo I; Pascual I; Erice G; Sanz-Sáez Á; Aguirreolea J; Sánchez-Díaz M; Irigoyen JJ; Araus JL; Morales F
    J Plant Physiol; 2015 Feb; 174():97-109. PubMed ID: 25462972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Exploitation of Local
    Antolín MC; Toledo M; Pascual I; Irigoyen JJ; Goicoechea N
    Plants (Basel); 2020 Dec; 10(1):. PubMed ID: 33396405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bunch transpiration is involved in the hastening of grape berry ripening under elevated temperature and low relative humidity conditions.
    Cabodevilla A; Morales F; Pascual I
    Plant Physiol Biochem; 2024 Jan; 206():108258. PubMed ID: 38096731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grape berry transpiration influences ripening and must composition in cv. Tempranillo (Vitis vinifera L.).
    Pascual I; Antolín MC; Goicoechea N; Irigoyen JJ; Morales F
    Physiol Plant; 2022 Jul; 174(4):e13741. PubMed ID: 35765704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Tempranillo negro (VN21), a high phenolic content grapevine Tempranillo clone, through UHPLC-QqQ-MS/MS polyphenol profiling.
    Royo C; Ferradás Y; Martínez-Zapater JM; Motilva MJ
    Food Chem; 2021 Oct; 360():130049. PubMed ID: 34022521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of artificial canopy shading on vegetative growth and ripening processes of cv. Nero d'Avola (
    Miccichè D; de Rosas MI; Ferro MV; Di Lorenzo R; Puccio S; Pisciotta A
    Front Plant Sci; 2023; 14():1210574. PubMed ID: 37822339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability of Tempranillo grape composition in the Rioja DOCa (Spain) related to soil and climatic characteristics.
    Ramos MC; Martínez de Toda F
    J Sci Food Agric; 2019 Feb; 99(3):1153-1165. PubMed ID: 30054923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures?
    Leibar U; Aizpurua A; Unamunzaga O; Pascual I; Morales F
    Photosynth Res; 2015 May; 124(2):199-215. PubMed ID: 25786733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future CO
    Kizildeniz T; Pascual I; Irigoyen JJ; Morales F
    Physiol Plant; 2021 Jul; 172(3):1779-1794. PubMed ID: 33704796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycorrhizal symbiosis affects ABA metabolism during berry ripening in Vitis vinifera L. cv. Tempranillo grown under climate change scenarios.
    Torres N; Goicoechea N; Zamarreño AM; Carmen Antolín M
    Plant Sci; 2018 Sep; 274():383-393. PubMed ID: 30080626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg.
    Carbonell-Bejerano P; Santa María E; Torres-Pérez R; Royo C; Lijavetzky D; Bravo G; Aguirreolea J; Sánchez-Díaz M; Antolín MC; Martínez-Zapater JM
    Plant Cell Physiol; 2013 Jul; 54(7):1200-16. PubMed ID: 23659918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of elevated CO2 on grapevine (Vitis vinifera L.): volatile composition, phenolic content, and in vitro antioxidant activity of red wine.
    Gonçalves B; Falco V; Moutinho-Pereira J; Bacelar E; Peixoto F; Correia C
    J Agric Food Chem; 2009 Jan; 57(1):265-73. PubMed ID: 19072054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutritional properties of Tempranillo grapevine leaves are affected by clonal diversity, mycorrhizal symbiosis and air temperature regime.
    Torres N; Antolín MC; Garmendia I; Goicoechea N
    Plant Physiol Biochem; 2018 Sep; 130():542-554. PubMed ID: 30098586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis Vinifera L.).
    Gaiotti F; Pastore C; Filippetti I; Lovat L; Belfiore N; Tomasi D
    Sci Rep; 2018 Jun; 8(1):8719. PubMed ID: 29880890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.