These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 33335536)
21. Grape yield and quality responses to simulated year 2100 expected climatic conditions under different soil textures. Leibar U; Pascual I; Morales F; Aizpurua A; Unamunzaga O J Sci Food Agric; 2017 Jun; 97(8):2633-2640. PubMed ID: 27748529 [TBL] [Abstract][Full Text] [Related]
22. Temperature Shift Between Vineyards Modulates Berry Phenology and Primary Metabolism in a Varietal Collection of Wine Grapevine. Gashu K; Sikron Persi N; Drori E; Harcavi E; Agam N; Bustan A; Fait A Front Plant Sci; 2020; 11():588739. PubMed ID: 33391301 [TBL] [Abstract][Full Text] [Related]
23. Grapevine varieties show different sensitivities to flavonoid alterations caused by high temperatures under two irrigation conditions. Pascual I; Martínez-Lüscher J; Irigoyen JJ; Goicoechea N; Carmen Antolín M Food Res Int; 2024 Oct; 194():114899. PubMed ID: 39232526 [TBL] [Abstract][Full Text] [Related]
25. The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. Movahed N; Pastore C; Cellini A; Allegro G; Valentini G; Zenoni S; Cavallini E; D'Incà E; Tornielli GB; Filippetti I J Plant Res; 2016 May; 129(3):513-26. PubMed ID: 26825649 [TBL] [Abstract][Full Text] [Related]
26. Is Tempranillo Blanco Grapevine Different from Tempranillo Tinto Only in the Color of the Grapes? An Updated Review. Kizildeniz T; Pascual I; Hilbert G; Irigoyen JJ; Morales F Plants (Basel); 2022 Jun; 11(13):. PubMed ID: 35807617 [TBL] [Abstract][Full Text] [Related]
28. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines. Bobeica N; Poni S; Hilbert G; Renaud C; Gomès E; Delrot S; Dai Z Front Plant Sci; 2015; 6():382. PubMed ID: 26074942 [TBL] [Abstract][Full Text] [Related]
29. Elevated atmospheric CO Reineke A; Selim M Sci Rep; 2019 Feb; 9(1):2995. PubMed ID: 30816321 [TBL] [Abstract][Full Text] [Related]
30. Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions. Martínez-Lüscher J; Morales F; Delrot S; Sánchez-Díaz M; Gomès E; Aguirreolea J; Pascual I Plant Sci; 2015 Mar; 232():13-22. PubMed ID: 25617319 [TBL] [Abstract][Full Text] [Related]
31. Relationship between Agronomic Parameters, Phenolic Composition of Grape Skin, and Texture Properties of Vitis vinifera L. cv. Tempranillo. García-Estévez I; Andrés-García P; Alcalde-Eon C; Giacosa S; Rolle L; Rivas-Gonzalo JC; Quijada-Morín N; Escribano-Bailón MT J Agric Food Chem; 2015 Sep; 63(35):7663-9. PubMed ID: 25916251 [TBL] [Abstract][Full Text] [Related]
32. Aminoacids and Flavonoids Profiling in Tempranillo Berries Can Be Modulated by the Arbuscular Mycorrhizal Fungi. Torres N; Hilbert G; Antolín MC; Goicoechea N Plants (Basel); 2019 Oct; 8(10):. PubMed ID: 31597352 [TBL] [Abstract][Full Text] [Related]
33. Climate change (elevated CO₂, elevated temperature and moderate drought) triggers the antioxidant enzymes' response of grapevine cv. Tempranillo, avoiding oxidative damage. Salazar-Parra C; Aguirreolea J; Sánchez-Díaz M; Irigoyen JJ; Morales F Physiol Plant; 2012 Feb; 144(2):99-110. PubMed ID: 21929631 [TBL] [Abstract][Full Text] [Related]
34. A whole canopy gas exchange system for the targeted manipulation of grapevine source-sink relations using sub-ambient CO Smith JP; Edwards EJ; Walker AR; Gouot JC; Barril C; Holzapfel BP BMC Plant Biol; 2019 Dec; 19(1):535. PubMed ID: 31795928 [TBL] [Abstract][Full Text] [Related]
35. Berry composition and climate: responses and empirical models. Barnuud NN; Zerihun A; Gibberd M; Bates B Int J Biometeorol; 2014 Aug; 58(6):1207-23. PubMed ID: 23958789 [TBL] [Abstract][Full Text] [Related]
36. Arbuscular Mycorrhizal Fungi Improve the Performance of Tempranillo and Cabernet Sauvignon Facing Water Deficit under Current and Future Climatic Conditions. Kozikova D; Pascual I; Goicoechea N Plants (Basel); 2024 Apr; 13(8):. PubMed ID: 38674564 [TBL] [Abstract][Full Text] [Related]
37. Phenolic characteristics acquired by berry skins of Vitis vinifera cv. Tempranillo in response to close-to-ambient solar ultraviolet radiation are mostly reflected in the resulting wines. Del-Castillo-Alonso MÁ; Monforte L; Tomás-Las-Heras R; Martínez-Abaigar J; Núñez-Olivera E J Sci Food Agric; 2020 Jan; 100(1):401-409. PubMed ID: 31637723 [TBL] [Abstract][Full Text] [Related]
39. Grape Ripening Is Regulated by Deficit Irrigation/Elevated Temperatures According to Cluster Position in the Canopy. Zarrouk O; Brunetti C; Egipto R; Pinheiro C; Genebra T; Gori A; Lopes CM; Tattini M; Chaves MM Front Plant Sci; 2016; 7():1640. PubMed ID: 27895648 [TBL] [Abstract][Full Text] [Related]
40. Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome. Rienth M; Torregrosa L; Sarah G; Ardisson M; Brillouet JM; Romieu C BMC Plant Biol; 2016 Jul; 16(1):164. PubMed ID: 27439426 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]