These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 33336280)
1. CRISPR/Cas9-Mediated GFP Reporter Knock-in in K562 and Raji Cell Lines for Tracking Immune Cell Killing Assay. Thongsin N; Wattanapanitch M Methods Mol Biol; 2021; 2211():213-229. PubMed ID: 33336280 [TBL] [Abstract][Full Text] [Related]
2. Rapid and efficient generation of GFP-knocked-in Drosophila by the CRISPR-Cas9-mediated genome editing. Kina H; Yoshitani T; Hanyu-Nakamura K; Nakamura A Dev Growth Differ; 2019 May; 61(4):265-275. PubMed ID: 31037730 [TBL] [Abstract][Full Text] [Related]
3. CRISPR/Cas9 Mediated GFP Knock-in at the MAP1LC3B Locus in 293FT Cells Is Better for Bona Fide Monitoring Cellular Autophagy. Wu Z; Zhao J; Qiu M; Mi Z; Meng M; Guo Y; Wang H; Yuan Z Biotechnol J; 2018 Nov; 13(11):e1700674. PubMed ID: 29673078 [TBL] [Abstract][Full Text] [Related]
4. An efficient method to enrich for knock-out and knock-in cellular clones using the CRISPR/Cas9 system. Niccheri F; Pecori R; Conticello SG Cell Mol Life Sci; 2017 Sep; 74(18):3413-3423. PubMed ID: 28421278 [TBL] [Abstract][Full Text] [Related]
5. Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons. Überbacher C; Obergasteiger J; Volta M; Venezia S; Müller S; Pesce I; Pizzi S; Lamonaca G; Picard A; Cattelan G; Malpeli G; Zoli M; Beccano-Kelly D; Flynn R; Wade-Martins R; Pramstaller PP; Hicks AA; Cowley SA; Corti C Stem Cell Res; 2019 Dec; 41():101656. PubMed ID: 31733438 [TBL] [Abstract][Full Text] [Related]
6. Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system. Sugano SS; Suzuki H; Shimokita E; Chiba H; Noji S; Osakabe Y; Osakabe K Sci Rep; 2017 Apr; 7(1):1260. PubMed ID: 28455526 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence-based methods for measuring target interference by CRISPR-Cas systems. Phan PT; Schelling M; Xue C; Sashital DG Methods Enzymol; 2019; 616():61-85. PubMed ID: 30691655 [TBL] [Abstract][Full Text] [Related]
8. Identifying Signalling Pathways Regulated by GPRC5B in β-Cells by CRISPR-Cas9-Mediated Genome Editing. Atanes P; Ruz-Maldonado I; Hawkes R; Liu B; Persaud SJ; Amisten S Cell Physiol Biochem; 2018; 45(2):656-666. PubMed ID: 29408822 [TBL] [Abstract][Full Text] [Related]
9. An improved flow cytometry-based natural killer cytotoxicity assay involving calcein AM staining of effector cells. Jang YY; Cho D; Kim SK; Shin DJ; Park MH; Lee JJ; Shin MG; Shin JH; Suh SP; Ryang DW Ann Clin Lab Sci; 2012; 42(1):42-9. PubMed ID: 22371909 [TBL] [Abstract][Full Text] [Related]
10. Enhanced CRISPR/Cas9-mediated biallelic genome targeting with dual surrogate reporter-integrated donors. Wu Y; Xu K; Ren C; Li X; Lv H; Han F; Wei Z; Wang X; Zhang Z FEBS Lett; 2017 Mar; 591(6):903-913. PubMed ID: 28214366 [TBL] [Abstract][Full Text] [Related]
11. Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Pinder J; Salsman J; Dellaire G Nucleic Acids Res; 2015 Oct; 43(19):9379-92. PubMed ID: 26429972 [TBL] [Abstract][Full Text] [Related]
12. Genome Editing of Erythroid Cell Culture Model Systems. Yik JJ; Crossley M; Quinlan KGR Methods Mol Biol; 2018; 1698():245-257. PubMed ID: 29076095 [TBL] [Abstract][Full Text] [Related]
13. Improved CRISPR/Cas9 gene editing by fluorescence activated cell sorting of green fluorescence protein tagged protoplasts. Petersen BL; Möller SR; Mravec J; Jørgensen B; Christensen M; Liu Y; Wandall HH; Bennett EP; Yang Z BMC Biotechnol; 2019 Jun; 19(1):36. PubMed ID: 31208390 [TBL] [Abstract][Full Text] [Related]
14. Generation and validation of PAX7 reporter lines from human iPS cells using CRISPR/Cas9 technology. Wu J; Hunt SD; Xue H; Liu Y; Darabi R Stem Cell Res; 2016 Mar; 16(2):220-8. PubMed ID: 26826926 [TBL] [Abstract][Full Text] [Related]
15. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna. Kumagai H; Nakanishi T; Matsuura T; Kato Y; Watanabe H PLoS One; 2017; 12(10):e0186112. PubMed ID: 29045453 [TBL] [Abstract][Full Text] [Related]
16. Development of a CRISPR/Cas9 System for Methylococcus capsulatus Tapscott T; Guarnieri MT; Henard CA Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729 [TBL] [Abstract][Full Text] [Related]
17. Reporter gene knock-in into Marc-145 cells using CRISPR/Cas9-mediated homologous recombination. Chang Y; Shao J; Gao Y; Liu W; Gao Z; Hu Y; Chang H Biotechnol Lett; 2020 Aug; 42(8):1317-1325. PubMed ID: 32185620 [TBL] [Abstract][Full Text] [Related]
18. Generation of a pHSPA6 gene-based multifunctional live cell sensor. Xie Z; Sun R; Qi C; Jiao S; Jiang Y; Liu Z; Zhao D; Liu R; Li Q; Yang K; Hu L; Wang X; Tang X; Ouyang H; Pang D Biochim Biophys Acta Mol Cell Res; 2021 Feb; 1868(2):118919. PubMed ID: 33279608 [TBL] [Abstract][Full Text] [Related]
19. Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells. Hu B; Zou Y; Zhang L; Tang J; Niedermann G; Firat E; Huang X; Zhu X Hum Gene Ther; 2019 Apr; 30(4):446-458. PubMed ID: 29706119 [TBL] [Abstract][Full Text] [Related]
20. A simple and efficient workflow for generation of knock-in mutations in Jurkat T cells using CRISPR/Cas9. Borowicz P; Chan H; Medina D; Gumpelmair S; Kjelstrup H; Spurkland A Scand J Immunol; 2020 Apr; 91(4):e12862. PubMed ID: 31889332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]