BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 33336372)

  • 1. Prospective longitudinal study of immune checkpoint molecule (ICM) expression in immune cell subsets during curative conventional therapy of head and neck squamous cell carcinoma (HNSCC).
    von Witzleben A; Fehn A; Grages A; Ezić J; Jeske SS; Puntigam LK; Brunner C; Kraus JM; Kestler HA; Doescher J; Brand M; Theodoraki MN; Ottensmeier CH; Hoffmann TK; Schuler PJ; Laban S
    Int J Cancer; 2021 Apr; 148(8):2023-2035. PubMed ID: 33336372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immune Checkpoint Expression on Immune Cells of HNSCC Patients and Modulation by Chemo- and Immunotherapy.
    Puntigam LK; Jeske SS; Götz M; Greiner J; Laban S; Theodoraki MN; Doescher J; Weissinger SE; Brunner C; Hoffmann TK; Schuler PJ
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma.
    Lechner A; Schlößer H; Rothschild SI; Thelen M; Reuter S; Zentis P; Shimabukuro-Vornhagen A; Theurich S; Wennhold K; Garcia-Marquez M; Tharun L; Quaas A; Schauss A; Isensee J; Hucho T; Huebbers C; von Bergwelt-Baildon M; Beutner D
    Oncotarget; 2017 Jul; 8(27):44418-44433. PubMed ID: 28574843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.
    Zhou G; Sprengers D; Boor PPC; Doukas M; Schutz H; Mancham S; Pedroza-Gonzalez A; Polak WG; de Jonge J; Gaspersz M; Dong H; Thielemans K; Pan Q; IJzermans JNM; Bruno MJ; Kwekkeboom J
    Gastroenterology; 2017 Oct; 153(4):1107-1119.e10. PubMed ID: 28648905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune-checkpoint molecules on regulatory T-cells as a potential therapeutic target in head and neck squamous cell cancers.
    Suzuki S; Ogawa T; Sano R; Takahara T; Inukai D; Akira S; Tsuchida H; Yoshikawa K; Ueda R; Tsuzuki T
    Cancer Sci; 2020 Jun; 111(6):1943-1957. PubMed ID: 32304268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamic role of immune checkpoint molecules in diagnosis, prognosis, and treatment of head and neck cancers.
    Mestiri S; El-Ella DMA; Fernandes Q; Bedhiafi T; Almoghrabi S; Akbar S; Inchakalody V; Assami L; Anwar S; Uddin S; Gul ARZ; Al-Muftah M; Merhi M; Raza A; Dermime S
    Biomed Pharmacother; 2024 Feb; 171():116095. PubMed ID: 38183744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OX40 signaling in head and neck squamous cell carcinoma: Overcoming immunosuppression in the tumor microenvironment.
    Bell RB; Leidner RS; Crittenden MR; Curti BD; Feng Z; Montler R; Gough MJ; Fox BA; Weinberg AD; Urba WJ
    Oral Oncol; 2016 Jan; 52():1-10. PubMed ID: 26614363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association Between Expression Level of PD1 by Tumor-Infiltrating CD8
    Kim HD; Song GW; Park S; Jung MK; Kim MH; Kang HJ; Yoo C; Yi K; Kim KH; Eo S; Moon DB; Hong SM; Ju YS; Shin EC; Hwang S; Park SH
    Gastroenterology; 2018 Dec; 155(6):1936-1950.e17. PubMed ID: 30145359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunotherapy for Head and Neck Squamous Cell Carcinoma.
    Schoppy DW; Sunwoo JB
    Hematol Oncol Clin North Am; 2015 Dec; 29(6):1033-43. PubMed ID: 26568546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prognostic impact of immune microenvironment in laryngeal and pharyngeal squamous cell carcinoma: Immune cell subtypes, immuno-suppressive pathways and clinicopathologic characteristics.
    Karpathiou G; Casteillo F; Giroult JB; Forest F; Fournel P; Monaya A; Froudarakis M; Dumollard JM; Prades JM; Peoc'h M
    Oncotarget; 2017 Mar; 8(12):19310-19322. PubMed ID: 28038471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Common Costimulatory and Coinhibitory Signaling Molecules in Head and Neck Squamous Cell Carcinoma.
    Liao P; Wang H; Tang YL; Tang YJ; Liang XH
    Front Immunol; 2019; 10():2457. PubMed ID: 31708918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific blockade CD73 alters the "exhausted" phenotype of T cells in head and neck squamous cell carcinoma.
    Deng WW; Li YC; Ma SR; Mao L; Yu GT; Bu LL; Kulkarni AB; Zhang WF; Sun ZJ
    Int J Cancer; 2018 Sep; 143(6):1494-1504. PubMed ID: 29663369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia.
    Williams P; Basu S; Garcia-Manero G; Hourigan CS; Oetjen KA; Cortes JE; Ravandi F; Jabbour EJ; Al-Hamal Z; Konopleva M; Ning J; Xiao L; Hidalgo Lopez J; Kornblau SM; Andreeff M; Flores W; Bueso-Ramos C; Blando J; Galera P; Calvo KR; Al-Atrash G; Allison JP; Kantarjian HM; Sharma P; Daver NG
    Cancer; 2019 May; 125(9):1470-1481. PubMed ID: 30500073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules.
    Zhou G; Sprengers D; Mancham S; Erkens R; Boor PPC; van Beek AA; Doukas M; Noordam L; Campos Carrascosa L; de Ruiter V; van Leeuwen RWF; Polak WG; de Jonge J; Groot Koerkamp B; van Rosmalen B; van Gulik TM; Verheij J; IJzermans JNM; Bruno MJ; Kwekkeboom J
    J Hepatol; 2019 Oct; 71(4):753-762. PubMed ID: 31195061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital pathology-aided assessment of tumor-infiltrating T lymphocytes in advanced stage, HPV-negative head and neck tumors.
    de Ruiter EJ; de Roest RH; Brakenhoff RH; Leemans CR; de Bree R; Terhaard CHJ; Willems SM
    Cancer Immunol Immunother; 2020 Apr; 69(4):581-591. PubMed ID: 31980916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PD-L1-specific helper T-cells exhibit effective antitumor responses: new strategy of cancer immunotherapy targeting PD-L1 in head and neck squamous cell carcinoma.
    Hirata-Nozaki Y; Ohkuri T; Ohara K; Kumai T; Nagata M; Harabuchi S; Kosaka A; Nagato T; Ishibashi K; Oikawa K; Aoki N; Ohara M; Harabuchi Y; Uno Y; Takei H; Celis E; Kobayashi H
    J Transl Med; 2019 Jun; 17(1):207. PubMed ID: 31221178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients.
    Jie HB; Gildener-Leapman N; Li J; Srivastava RM; Gibson SP; Whiteside TL; Ferris RL
    Br J Cancer; 2013 Nov; 109(10):2629-35. PubMed ID: 24169351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-inhibitory immune checkpoints in head and neck squamous cell carcinoma.
    Deng WW; Wu L; Sun ZJ
    Oral Dis; 2018 Mar; 24(1-2):120-123. PubMed ID: 29480599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The aryl hydrocarbon receptor suppresses immunity to oral squamous cell carcinoma through immune checkpoint regulation.
    Kenison JE; Wang Z; Yang K; Snyder M; Quintana FJ; Sherr DH
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33941684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GITR ligation enhances functionality of tumor-infiltrating T cells in hepatocellular carcinoma.
    van Beek AA; Zhou G; Doukas M; Boor PPC; Noordam L; Mancham S; Campos Carrascosa L; van der Heide-Mulder M; Polak WG; Ijzermans JNM; Pan Q; Heirman C; Mahne A; Bucktrout SL; Bruno MJ; Sprengers D; Kwekkeboom J
    Int J Cancer; 2019 Aug; 145(4):1111-1124. PubMed ID: 30719701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.