These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. CRISPR-Act2.0: An Improved Multiplexed System for Plant Transcriptional Activation. Malzahn A; Zhang Y; Qi Y Methods Mol Biol; 2019; 1917():83-93. PubMed ID: 30610630 [TBL] [Abstract][Full Text] [Related]
8. Gene activation by a CRISPR-assisted Xu X; Gao J; Dai W; Wang D; Wu J; Wang J Elife; 2019 Apr; 8():. PubMed ID: 30973327 [TBL] [Abstract][Full Text] [Related]
9. An Easy and Efficient Strategy for the Enhancement of Epothilone Production Mediated by TALE-TF and CRISPR/dcas9 Systems in Ye W; Liu T; Zhu M; Zhang W; Huang Z; Li S; Li H; Kong Y; Chen Y Front Bioeng Biotechnol; 2019; 7():334. PubMed ID: 32039165 [TBL] [Abstract][Full Text] [Related]
10. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit. Chapman B; Han JH; Lee HJ; Ruud I; Kim TH Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664 [TBL] [Abstract][Full Text] [Related]
11. A programmable hierarchical-responsive nanoCRISPR elicits robust activation of endogenous target to treat cancer. Liu C; Wang N; Luo R; Li L; Yang W; Wang X; Shen M; Wu Q; Gong C Theranostics; 2021; 11(20):9833-9846. PubMed ID: 34815789 [TBL] [Abstract][Full Text] [Related]
13. Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells. Wan L; Xia T; Du Y; Liu J; Xie Y; Zhang Y; Guan F; Wu J; Wang X; Shi C FASEB J; 2019 Jul; 33(7):8530-8542. PubMed ID: 30970216 [TBL] [Abstract][Full Text] [Related]
14. In Vitro and in Vivo RNA Inhibition by CD9-HuR Functionalized Exosomes Encapsulated with miRNA or CRISPR/dCas9. Li Z; Zhou X; Wei M; Gao X; Zhao L; Shi R; Sun W; Duan Y; Yang G; Yuan L Nano Lett; 2019 Jan; 19(1):19-28. PubMed ID: 30517011 [TBL] [Abstract][Full Text] [Related]
15. Epigenome editing based on CRISPR/dCas9 Huang H; Zhang W; Zhang J; Zhao A; Jiang H Exp Cell Res; 2023 Apr; 425(2):113551. PubMed ID: 36914062 [TBL] [Abstract][Full Text] [Related]
16. Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems. Wang XG; Ma SY; Chang JS; Shi R; Wang RL; Zhao P; Xia QY Insect Sci; 2019 Dec; 26(6):983-990. PubMed ID: 30088341 [TBL] [Abstract][Full Text] [Related]
17. Enhanced intrinsic CYP3A4 activity in human hepatic C3A cells with optically controlled CRISPR/dCas9 activator complex. Han S; Wei S; Wang X; Han X; Zhang M; Su M; Li Y; Guo J; Zeng W; Liu J; Gao Y; Shen L Integr Biol (Camb); 2018 Dec; 10(12):780-790. PubMed ID: 30520487 [TBL] [Abstract][Full Text] [Related]
18. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects. Rahman MM; Tollefsbol TO Methods; 2021 Mar; 187():77-91. PubMed ID: 32315755 [TBL] [Abstract][Full Text] [Related]
19. CRISPR-assisted transcription activation by phase-separation proteins. Liu J; Chen Y; Nong B; Luo X; Cui K; Li Z; Zhang P; Tan W; Yang Y; Ma W; Liang P; Songyang Z Protein Cell; 2023 Dec; 14(12):874-887. PubMed ID: 36905356 [TBL] [Abstract][Full Text] [Related]
20. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by γδ T cells in liver fibrosis. Seo W; Eun HS; Kim SY; Yi HS; Lee YS; Park SH; Jang MJ; Jo E; Kim SC; Han YM; Park KG; Jeong WI Hepatology; 2016 Aug; 64(2):616-31. PubMed ID: 27178735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]