These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 33336657)
41. Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies. DiLabio GA; Johnson ER; Otero-de-la-Roza A Phys Chem Chem Phys; 2013 Aug; 15(31):12821-8. PubMed ID: 23803877 [TBL] [Abstract][Full Text] [Related]
42. A semi-automated quantum-mechanical workflow for the generation of molecular monolayers and aggregates. Kohn JT; Grimme S; Hansen A J Chem Phys; 2024 Sep; 161(12):. PubMed ID: 39319657 [TBL] [Abstract][Full Text] [Related]
43. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems. Cho Y; Cho WJ; Youn IS; Lee G; Singh NJ; Kim KS Acc Chem Res; 2014 Nov; 47(11):3321-30. PubMed ID: 25338296 [TBL] [Abstract][Full Text] [Related]
44. Accurate Receptor-Ligand Binding Free Energies from Fast QM Conformational Chemical Space Sampling. Boz E; Stein M Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33802920 [TBL] [Abstract][Full Text] [Related]
45. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
46. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. Burns LA; Vázquez-Mayagoitia A; Sumpter BG; Sherrill CD J Chem Phys; 2011 Feb; 134(8):084107. PubMed ID: 21361527 [TBL] [Abstract][Full Text] [Related]
48. Comparative Study of Single and Double Hybrid Density Functionals for the Prediction of 3d Transition Metal Thermochemistry. Jiang W; Laury ML; Powell M; Wilson AK J Chem Theory Comput; 2012 Nov; 8(11):4102-11. PubMed ID: 26605577 [TBL] [Abstract][Full Text] [Related]
49. DFT-D4 counterparts of leading meta-generalized-gradient approximation and hybrid density functionals for energetics and geometries. Najibi A; Goerigk L J Comput Chem; 2020 Nov; 41(30):2562-2572. PubMed ID: 32870518 [TBL] [Abstract][Full Text] [Related]
50. Calculation of Metallocene Ionization Potentials via Auxiliary Field Quantum Monte Carlo: Toward Benchmark Quantum Chemistry for Transition Metals. Rudshteyn B; Weber JL; Coskun D; Devlaminck PA; Zhang S; Reichman DR; Shee J; Friesner RA J Chem Theory Comput; 2022 May; 18(5):2845-2862. PubMed ID: 35377642 [TBL] [Abstract][Full Text] [Related]
51. Non-Covalent Interactions Atlas Benchmark Data Sets 3: Repulsive Contacts. Kříž K; Nováček M; Řezáč J J Chem Theory Comput; 2021 Mar; 17(3):1548-1561. PubMed ID: 33620192 [TBL] [Abstract][Full Text] [Related]
52. Zn Coordination Chemistry: Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory. Amin EA; Truhlar DG J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981 [TBL] [Abstract][Full Text] [Related]
53. Comprehensive Thermochemical Benchmark Set of Realistic Closed-Shell Metal Organic Reactions. Dohm S; Hansen A; Steinmetz M; Grimme S; Checinski MP J Chem Theory Comput; 2018 May; 14(5):2596-2608. PubMed ID: 29565586 [TBL] [Abstract][Full Text] [Related]
54. Can Small Polyaromatics Describe Their Larger Counterparts for Local Reactions? A Computational Study on the H-Abstraction Reaction by an H-Atom from Polyaromatics. Yönder Ö; Schmitz G; Hättig C; Schmid R; Debiagi P; Hasse C; Locaspi A; Faravelli T J Phys Chem A; 2020 Nov; 124(46):9626-9637. PubMed ID: 33147026 [TBL] [Abstract][Full Text] [Related]
55. Simplified DFT methods for consistent structures and energies of large systems. Caldeweyher E; Brandenburg JG J Phys Condens Matter; 2018 May; 30(21):213001. PubMed ID: 29633964 [TBL] [Abstract][Full Text] [Related]
56. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost. Schwabe T; Grimme S Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790 [TBL] [Abstract][Full Text] [Related]
57. Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods. Minenkov Y; Wang H; Wang Z; Sarathy SM; Cavallo L J Chem Theory Comput; 2017 Aug; 13(8):3537-3560. PubMed ID: 28636351 [TBL] [Abstract][Full Text] [Related]
58. Toward accurate prediction of amino acid derivatives structure and energetics from DFT: glycine conformers and their interconversions. Shu C; Jiang Z; Biczysko M J Mol Model; 2020 May; 26(6):129. PubMed ID: 32394106 [TBL] [Abstract][Full Text] [Related]
59. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Pracht P; Bohle F; Grimme S Phys Chem Chem Phys; 2020 Apr; 22(14):7169-7192. PubMed ID: 32073075 [TBL] [Abstract][Full Text] [Related]
60. Understanding and Quantifying London Dispersion Effects in Organometallic Complexes. Bursch M; Caldeweyher E; Hansen A; Neugebauer H; Ehlert S; Grimme S Acc Chem Res; 2019 Jan; 52(1):258-266. PubMed ID: 30586286 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]