BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 33336997)

  • 21. Lactobacillus curvatus UFV-NPAC1 and other lactic acid bacteria isolated from calabresa, a fermented meat product, present high bacteriocinogenic activity against Listeria monocytogenes.
    Castilho NPA; Colombo M; Oliveira LL; Todorov SD; Nero LA
    BMC Microbiol; 2019 Mar; 19(1):63. PubMed ID: 30894128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of bacteriocins in vegetable food biopreservation.
    Settanni L; Corsetti A
    Int J Food Microbiol; 2008 Jan; 121(2):123-38. PubMed ID: 18022269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Traditional Bulgarian Dairy Products: Ethnic Foods with Health Benefits.
    Petrova P; Ivanov I; Tsigoriyna L; Valcheva N; Vasileva E; Parvanova-Mancheva T; Arsov A; Petrov K
    Microorganisms; 2021 Feb; 9(3):. PubMed ID: 33668910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional roles and engineering strategies to improve the industrial functionalities of lactic acid bacteria during food fermentation.
    Yang H; Hao L; Jin Y; Huang J; Zhou R; Wu C
    Biotechnol Adv; 2024 Jun; 74():108397. PubMed ID: 38909664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi.
    Lee SJ; Jeon HS; Yoo JY; Kim JH
    Foods; 2021 Sep; 10(9):. PubMed ID: 34574257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential of bacteriocin-producing lactic acid bacteria for safety improvements of traditional Thai fermented meat and human health.
    Swetwiwathana A; Visessanguan W
    Meat Sci; 2015 Nov; 109():101-5. PubMed ID: 26100576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475.
    Jiménez JJ; Diep DB; Borrero J; Gútiez L; Arbulu S; Nes IF; Herranz C; Cintas LM; Hernández PE
    Microb Cell Fact; 2015 Oct; 14():166. PubMed ID: 26471395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Valorization of Vegetable Food Waste and By-Products Through Fermentation Processes.
    Sabater C; Ruiz L; Delgado S; Ruas-Madiedo P; Margolles A
    Front Microbiol; 2020; 11():581997. PubMed ID: 33193217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides.
    Zannini E; Waters DM; Coffey A; Arendt EK
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1121-1135. PubMed ID: 26621802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of bacteriocinogenic activity, safety traits and biotechnological potential of fecal lactic acid bacteria (LAB), isolated from Griffon Vultures (Gyps fulvus subsp. fulvus).
    Arbulu S; Jiménez JJ; Gútiez L; Campanero C; Del Campo R; Cintas LM; Herranz C; Hernández PE
    BMC Microbiol; 2016 Sep; 16(1):228. PubMed ID: 27688001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring Microbial Contributions to Nutraceutical Production: From Natural to Designed Foods.
    Thakur B; Kaur S; Rani N; Kaur R; Upadhyay SK; Tripathi M
    Mol Biotechnol; 2023 Nov; ():. PubMed ID: 37948026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Technically relevant enzymes and proteins produced by LAB suitable for industrial and biological activity.
    García-Cano I; Rocha-Mendoza D; Kosmerl E; Zhang L; Jiménez-Flores R
    Appl Microbiol Biotechnol; 2020 Feb; 104(4):1401-1422. PubMed ID: 31900557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?
    Egan K; Field D; Rea MC; Ross RP; Hill C; Cotter PD
    Front Microbiol; 2016; 7():461. PubMed ID: 27092121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioactive Antimicrobial Peptides from Food Proteins: Perspectives and Challenges for Controlling Foodborne Pathogens.
    Corrêa JAF; de Melo Nazareth T; Rocha GFD; Luciano FB
    Pathogens; 2023 Mar; 12(3):. PubMed ID: 36986399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards lactic acid bacteria-based biorefineries.
    Mazzoli R; Bosco F; Mizrahi I; Bayer EA; Pessione E
    Biotechnol Adv; 2014 Nov; 32(7):1216-1236. PubMed ID: 25087936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part I: overview.
    Hayes M; Ross RP; Fitzgerald GF; Stanton C
    Biotechnol J; 2007 Apr; 2(4):426-34. PubMed ID: 17407210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality.
    O'Sullivan L; Ross RP; Hill C
    Biochimie; 2002; 84(5-6):593-604. PubMed ID: 12423803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The potential of lactic acid bacteria for the production of safe and wholesome food.
    Hammes WP; Tichaczek PS
    Z Lebensm Unters Forsch; 1994 Mar; 198(3):193-201. PubMed ID: 8178575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antibacterial Activity of Lactic Acid Bacteria to Improve Shelf Life of Raw Meat.
    Hernández-Aquino S; Miranda-Romero LA; Fujikawa H; Maldonado-Simán EJ; Alarcón-Zuñiga B
    Biocontrol Sci; 2019; 24(4):185-192. PubMed ID: 31875610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preservation and fermentation: past, present and future.
    Ross RP; Morgan S; Hill C
    Int J Food Microbiol; 2002 Nov; 79(1-2):3-16. PubMed ID: 12382680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.