BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 33337073)

  • 1. Recent advances on protein-based Pickering high internal phase emulsions (Pickering HIPEs): Fabrication, characterization, and applications.
    Zhao Q; Zaaboul F; Liu Y; Li J
    Compr Rev Food Sci Food Saf; 2020 Jul; 19(4):1934-1968. PubMed ID: 33337073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-Based Pickering High Internal Phase Emulsions as Nutraceutical Vehicles of and the Template for Advanced Materials: A Perspective Paper.
    Huang XN; Zhu JJ; Xi YK; Yin SW; Ngai T; Yang XQ
    J Agric Food Chem; 2019 Sep; 67(35):9719-9726. PubMed ID: 31398015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Zein/Pectin Hybrid Particle-Stabilized Pickering High Internal Phase Emulsions with Robust and Ordered Interface Architecture.
    Zhou FZ; Huang XN; Wu ZL; Yin SW; Zhu JH; Tang CH; Yang XQ
    J Agric Food Chem; 2018 Oct; 66(42):11113-11123. PubMed ID: 30272970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of antioxidant gliadin particle stabilized Pickering high internal phase emulsions (HIPEs) as oral delivery systems and the in vitro digestion fate.
    Zhou FZ; Zeng T; Yin SW; Tang CH; Yuan DB; Yang XQ
    Food Funct; 2018 Feb; 9(2):959-970. PubMed ID: 29322140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Characterization of Novel Water-Insoluble Protein Porous Materials Derived from Pickering High Internal-Phase Emulsions Stabilized by Gliadin-Chitosan-Complex Particles.
    Zhou FZ; Yu XH; Zeng T; Yin SW; Tang CH; Yang XQ
    J Agric Food Chem; 2019 Mar; 67(12):3423-3431. PubMed ID: 30835109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs.
    Zeng T; Wu ZL; Zhu JY; Yin SW; Tang CH; Wu LY; Yang XQ
    Food Chem; 2017 Sep; 231():122-130. PubMed ID: 28449988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of stable Pickering emulsions/oil powders and Pickering HIPEs stabilized by gliadin/chitosan complex particles.
    Yuan DB; Hu YQ; Zeng T; Yin SW; Tang CH; Yang XQ
    Food Funct; 2017 Jun; 8(6):2220-2230. PubMed ID: 28513748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biopolymer-based pickering high internal phase emulsions: Intrinsic composition of matrix components, fundamental characteristics and perspective.
    Zhao Q; Fan L; Li J
    Food Res Int; 2023 Mar; 165():112458. PubMed ID: 36869475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple method for fabrication of high internal phase emulsions solely using novel pea protein isolate nanoparticles: Stability of ionic strength and temperature.
    Li XL; Liu WJ; Xu BC; Zhang B
    Food Chem; 2022 Feb; 370():130899. PubMed ID: 34509149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-Based High Internal Phase Pickering Emulsions: A Review of Their Fabrication, Composition and Future Perspectives in the Food Industry.
    Zhang M; Li X; Zhou L; Chen W; Marchioni E
    Foods; 2023 Jan; 12(3):. PubMed ID: 36766011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ovalbumin as an Outstanding Pickering Nanostabilizer for High Internal Phase Emulsions.
    Xu YT; Tang CH; Liu TX; Liu R
    J Agric Food Chem; 2018 Aug; 66(33):8795-8804. PubMed ID: 30044922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose.
    Pang B; Liu H; Liu P; Peng X; Zhang K
    J Colloid Interface Sci; 2018 Mar; 513():629-637. PubMed ID: 29207345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Internal-Phase Pickering Emulsions Stabilized Solely by Peanut-Protein-Isolate Microgel Particles with Multiple Potential Applications.
    Jiao B; Shi A; Wang Q; Binks BP
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9274-9278. PubMed ID: 29845713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of food-grade Pickering high internal phase emulsions stabilized by the mixture of β-cyclodextrin and sugar beet pectin.
    Liu Z; Li Y; Geng S; Mo H; Liu B
    Int J Biol Macromol; 2021 Jul; 182():252-263. PubMed ID: 33838198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound pre-fractured casein and in-situ formation of high internal phase emulsions.
    Bi AQ; Xu XB; Guo Y; Du M; Yu CP; Wu C
    Ultrason Sonochem; 2020 Jun; 64():104916. PubMed ID: 31874728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and digestive characteristics of high internal phase Pickering emulsions stabilized by ovalbumin-pectin complexes for improving the stability and bioaccessibility of curcumin.
    Wang L; Zhang H; Li H; Zhang H; Chi Y; Xia N; Li Z; Jiang L; Zhang X; Rayan AM
    Food Chem; 2022 Sep; 389():133055. PubMed ID: 35489261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Pickering High Internal Phase Emulsion Stabilized by Food Waste-Hen Egg Chalaza.
    Wang L; Wang J; Wang A
    Foods; 2021 Mar; 10(3):. PubMed ID: 33809138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles.
    Jia Y; Kong L; Zhang B; Fu X; Huang Q
    Int J Biol Macromol; 2022 May; 207():791-800. PubMed ID: 35346682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoresponsive starch-based particle-stabilized Pickering high internal phase emulsions as nutraceutical containers for controlled release.
    Wang C; Pei X; Tan J; Zhang T; Zhai K; Zhang F; Bai Y; Deng Y; Zhang B; Wang Y; Tan Y; Xu K; Wang P
    Int J Biol Macromol; 2020 Mar; 146():171-178. PubMed ID: 31904457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coalescence behavior of eco-friendly Pickering-MIPES and HIPEs stabilized by using bacterial cellulose nanofibrils.
    Li Q; Wu Y; Shabbir M; Pei Y; Liang H; Li J; Chen Y; Li Y; Li B; Luo X; Liu S
    Food Chem; 2021 Jul; 349():129163. PubMed ID: 33550021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.