BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33337131)

  • 1. Spinning Regenerated Silk Fibers with Improved Toughness by Plasticizing with Low Molecular Weight Silk.
    Yao Y; Allardyce BJ; Rajkhowa R; Guo C; Mu X; Hegh D; Zhang J; Lynch P; Wang X; Kaplan DL; Razal JM
    Biomacromolecules; 2021 Feb; 22(2):788-799. PubMed ID: 33337131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution.
    Xie F; Zhang H; Shao H; Hu X
    Int J Biol Macromol; 2006 May; 38(3-5):284-8. PubMed ID: 16678253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wet-spinning of osmotically stressed silk fibroin.
    Sohn S; Gido SP
    Biomacromolecules; 2009 Aug; 10(8):2086-91. PubMed ID: 19572633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous Wet Spinning of Regenerated Silk Fibers from Spinning Dopes Containing 4% Fibroin Protein.
    Wöltje M; Isenberg KL; Cherif C; Aibibu D
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toughening Wet-Spun Silk Fibers by Silk Nanofiber Templating.
    Yao Y; Allardyce BJ; Rajkhowa R; Hegh D; Qin S; Usman KAS; Mota-Santiago P; Zhang J; Lynch P; Wang X; Kaplan DL; Razal JM
    Macromol Rapid Commun; 2022 Apr; 43(7):e2100891. PubMed ID: 34939252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms.
    Zhu Z; Kikuchi Y; Kojima K; Tamura T; Kuwabara N; Nakamura T; Asakura T
    J Biomater Sci Polym Ed; 2010; 21(3):395-411. PubMed ID: 20178693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wild Silkworm Cocoon Waste Conversion into Tough Regenerated Silk Fibers by Solution Spinning.
    Yazawa K; Iwata S; Gotoh Y
    Biomacromolecules; 2023 Apr; 24(4):1700-1708. PubMed ID: 36917682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning.
    Ha SW; Tonelli AE; Hudson SM
    Biomacromolecules; 2005; 6(3):1722-31. PubMed ID: 15877399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of mechanical deformation on the structure of regenerated Bombyx mori silk fibroin films as revealed using Raman and infrared spectroscopy.
    Huot A; Lefèvre T; Rioux-Dubé JF; Paquet-Mercier F; Nault AP; Auger M; Pézolet M
    Appl Spectrosc; 2015 Jun; 69(6):689-98. PubMed ID: 25954973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphic regenerated silk fibers assembled through bioinspired spinning.
    Ling S; Qin Z; Li C; Huang W; Kaplan DL; Buehler MJ
    Nat Commun; 2017 Nov; 8(1):1387. PubMed ID: 29123097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Dry-spinning and Characterization of Regenerated Silk Fibroin Fibers.
    Peng Q; Shao H; Hu X; Zhang Y
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28892028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers.
    Pérez-Rigueiro J; Madurga R; Gañán-Calvo AM; Elices M; Guinea GV; Tasei Y; Nishimura A; Matsuda H; Asakura T
    Sci Rep; 2019 Feb; 9(1):2398. PubMed ID: 30787337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk Fibroin Degradation Related to Rheological and Mechanical Properties.
    Partlow BP; Tabatabai AP; Leisk GG; Cebe P; Blair DL; Kaplan DL
    Macromol Biosci; 2016 May; 16(5):666-75. PubMed ID: 26756449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of molecular weight on electro-spinning performance of regenerated silk.
    Park BK; Um IC
    Int J Biol Macromol; 2018 Jan; 106():1166-1172. PubMed ID: 28847607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for the Biofunctionalization of Straining Flow Spinning Regenerated
    Lozano-Picazo P; Castro-Domínguez C; Bruno AL; Baeza A; Martínez AS; López PA; Castro Á; Lakhal Y; Montero E; Colchero L; González-Nieto D; Rojo FJ; Panetsos F; Ramos M; Daza R; Gañán-Calvo AM; Elices M; Guinea GV; Pérez-Rigueiro J
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular organization of regenerated silkworm silk fibers.
    Pérez-Rigueiro J; Biancotto L; Corsini P; Marsano E; Elices M; Plaza GR; Guinea GV
    Int J Biol Macromol; 2009 Mar; 44(2):195-202. PubMed ID: 19133291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of Amorphous Silk Fiber Spinning and Postspinning Crystallization for Tough Regenerated Silk Fibers.
    Yazawa K; Malay AD; Ifuku N; Ishii T; Masunaga H; Hikima T; Numata K
    Biomacromolecules; 2018 Jun; 19(6):2227-2237. PubMed ID: 29694780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution.
    Ha SW; Park YH; Hudson SM
    Biomacromolecules; 2003; 4(3):488-96. PubMed ID: 12741761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Silk Fibers with Aligned Hierarchical Microstructures.
    Li S; Hang Y; Ding Z; Lu Q; Lu G; Chen H; Kaplan DL
    ACS Biomater Sci Eng; 2020 May; 6(5):2847-2854. PubMed ID: 33463289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of degumming ratio on wet spinning and post drawing performance of regenerated silk.
    Kim HJ; Um IC
    Int J Biol Macromol; 2014 Jun; 67():387-93. PubMed ID: 24709013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.