These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33337144)

  • 1. BioMetAll: Identifying Metal-Binding Sites in Proteins from Backbone Preorganization.
    Sánchez-Aparicio JE; Tiessler-Sala L; Velasco-Carneros L; Roldán-Martín L; Sciortino G; Maréchal JD
    J Chem Inf Model; 2021 Jan; 61(1):311-323. PubMed ID: 33337144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GASS-Metal: identifying metal-binding sites on protein structures using genetic algorithms.
    Paiva VA; Mendonça MV; Silveira SA; Ascher DB; Pires DEV; Izidoro SC
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35595534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIonSite: Ligand-specific prediction of metal ion-binding sites via enhanced AdaBoost algorithm with protein sequence information.
    Qiao L; Xie D
    Anal Biochem; 2019 Feb; 566():75-88. PubMed ID: 30414728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple Coordination Geometry Descriptors Allow to Accurately Predict Metal-Binding Sites in Proteins.
    Sciortino G; Garribba E; Rodríguez-Guerra Pedregal J; Maréchal JD
    ACS Omega; 2019 Feb; 4(2):3726-3731. PubMed ID: 31459585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking a computational design method for the incorporation of metal ion-binding sites at symmetric protein interfaces.
    Hansen WA; Khare SD
    Protein Sci; 2017 Aug; 26(8):1584-1594. PubMed ID: 28513090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mFASD: a structure-based algorithm for discriminating different types of metal-binding sites.
    He W; Liang Z; Teng M; Niu L
    Bioinformatics; 2015 Jun; 31(12):1938-44. PubMed ID: 25649619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SuperStar: improved knowledge-based interaction fields for protein binding sites.
    Verdonk ML; Cole JC; Watson P; Gillet V; Willett P
    J Mol Biol; 2001 Mar; 307(3):841-59. PubMed ID: 11273705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of 3D metal binding sites from translated gene sequences based on remote-homology templates.
    Levy R; Edelman M; Sobolev V
    Proteins; 2009 Aug; 76(2):365-74. PubMed ID: 19173310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal protein interactions.
    Sarkar B
    Prog Food Nutr Sci; 1987; 11(3-4):363-400. PubMed ID: 3328221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis.
    Koebke KJ; Pecoraro VL
    Acc Chem Res; 2019 May; 52(5):1160-1167. PubMed ID: 30933479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanosecond Dynamics at Protein Metal Sites: An Application of Perturbed Angular Correlation (PAC) of γ-Rays Spectroscopy.
    Chakraborty S; Pallada S; Pedersen JT; Jancso A; Correia JG; Hemmingsen L
    Acc Chem Res; 2017 Sep; 50(9):2225-2232. PubMed ID: 28832106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo protein design as a methodology for synthetic bioinorganic chemistry.
    Mocny CS; Pecoraro VL
    Acc Chem Res; 2015 Aug; 48(8):2388-96. PubMed ID: 26237119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grafting of discontinuous sites: a protein modeling strategy.
    Hornischer K; Blöcker H
    Protein Eng; 1996 Nov; 9(11):931-9. PubMed ID: 8961346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
    Lu Y
    Inorg Chem; 2006 Dec; 45(25):9930-40. PubMed ID: 17140190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of tools and database for analysis of metal binding sites in protein.
    Kuntal BK; Aparoy P; Reddanna P
    Protein Pept Lett; 2010 Jun; 17(6):765-73. PubMed ID: 20205657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A stability concept for metal ion coordination to single-stranded nucleic acids and affinities of individual sites.
    Sigel RK; Sigel H
    Acc Chem Res; 2010 Jul; 43(7):974-84. PubMed ID: 20235593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexibility of metal binding sites in proteins on a database scale.
    Babor M; Greenblatt HM; Edelman M; Sobolev V
    Proteins; 2005 May; 59(2):221-30. PubMed ID: 15726624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation and Applications of Protein-Ligand Docking Approaches Improved for Metalloligands with Multiple Vacant Sites.
    Sciortino G; Garribba E; Maréchal JD
    Inorg Chem; 2019 Jan; 58(1):294-306. PubMed ID: 30475597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting 3D structural templates for detection of metal-binding sites in protein structures.
    Goyal K; Mande SC
    Proteins; 2008 Mar; 70(4):1206-18. PubMed ID: 17847089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.