These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 3333730)

  • 21. Microcomputer simulation as an aid in analyzing data and teaching the principles of glomerular dynamics.
    Oken DE
    Ren Physiol Biochem; 1988; 11(6):332-40. PubMed ID: 3072622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer program for the equations describing the steady state of enzyme reactions.
    Varon R; Garcia-Sevilla F; Garcia-Moreno M; Garcia-Canovas F; Peyro R; Duggleby RG
    Comput Appl Biosci; 1997 Apr; 13(2):159-67. PubMed ID: 9146963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A microcomputer algorithm for solving first-order compartmental models involving recycling.
    Birchall A; James AC
    Health Phys; 1989 Jun; 56(6):857-68. PubMed ID: 2722508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MicroPharm-K, a microcomputer interactive program for the analysis and simulation of pharmacokinetic processes.
    Urien S
    Pharm Res; 1995 Aug; 12(8):1225-30. PubMed ID: 7494838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A method to describe enzyme-catalyzed reactions by combining steady state and time course enzyme kinetic parameters.
    Walsh R; Martin E; Darvesh S
    Biochim Biophys Acta; 2010 Jan; 1800(1):1-5. PubMed ID: 19840832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Progress curve analysis in enzyme kinetics: model discrimination and parameter estimation.
    Duggleby RG; Morrison JF
    Biochim Biophys Acta; 1978 Oct; 526(2):398-409. PubMed ID: 718944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The computerized derivation of rate equations for enzyme reactions on the basis of the pseudo-steady-state assumption and the rapid-equilibrium assumption.
    Ishikawa H; Maeda T; Hikita H; Miyatake K
    Biochem J; 1988 Apr; 251(1):175-81. PubMed ID: 3390151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of kinetic parameters of enzyme-catalyzed reactions with a minimum number of velocity measurements.
    Alberty RA
    J Theor Biol; 2008 Sep; 254(1):156-63. PubMed ID: 18582902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Kinetic Analysis of Coupled (or Auxiliary) Enzyme Reactions.
    Eilertsen J; Schnell S
    Bull Math Biol; 2018 Dec; 80(12):3154-3183. PubMed ID: 30288641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FUGE: an analytical ultracentrifuge simulation for teaching purposes.
    Mynett A
    Comput Appl Biosci; 1988 Apr; 4(2):249-52. PubMed ID: 3048569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative full time course analysis of nonlinear enzyme cycling kinetics.
    Cao W; De La Cruz EM
    Sci Rep; 2013; 3():2658. PubMed ID: 24029878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Final phase of enzyme reactions following a Michaelis-Menten mechanisms in which the free enzyme and/or the enzyme-substrate complex are unstable.
    Varón R; Garrido del Solo C; García-Moreno M; Sánchez-Gracia A; García-Cánovas F
    Biol Chem Hoppe Seyler; 1994 Jan; 375(1):35-42. PubMed ID: 8003255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A two-step computer-assisted method for deriving steady-state rate equations.
    Fromm SJ; Fromm HJ
    Biochem Biophys Res Commun; 1999 Nov; 265(2):448-52. PubMed ID: 10558887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The analysis of enzyme progress curves by numerical differentiation, including competitive product inhibition and enzyme reactivation.
    Koerber SC; Fink AL
    Anal Biochem; 1987 Aug; 165(1):75-87. PubMed ID: 3120622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells.
    Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M
    Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An enzyme kinetics program for desk-top computers.
    Crabbe MJ
    Comput Biol Med; 1982; 12(4):263-83. PubMed ID: 6759017
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Teaching memorized spelling with a microcomputer: time delay and computer-assisted instruction.
    Stevens KB; Blackhurst AE; Slaton DB
    J Appl Behav Anal; 1991; 24(1):153-60. PubMed ID: 2055798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Method for automatic data analysis, parameter assessment and graphic representation of dependencies in kinetic research (a software package for the Pravets-82 microcomputer)].
    Kosekova G; Vrabchev N; Sirakov L
    Eksp Med Morfol; 1987; 26(1):37-49. PubMed ID: 3595497
    [No Abstract]   [Full Text] [Related]  

  • 39. The use of computer simulation in teaching clinical diagnosis.
    Wigton RS
    Comput Methods Programs Biomed; 1987; 25(2):111-4. PubMed ID: 3315425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A laboratory work to introduce biochemistry undergraduate students to basic enzyme kinetics-alkaline phosphatase as a model.
    Miquet JG; González L; Sotelo AI; González Lebrero RM
    Biochem Mol Biol Educ; 2019 Jan; 47(1):93-99. PubMed ID: 30576049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.