These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33337426)

  • 21. Relationship between seat surface shape and pressure distribution in school seat models.
    Rincón O; Bernal ML; Salazar JJ; Zea CR
    Work; 2020; 66(1):161-171. PubMed ID: 32417823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Car seat impact on driver's sitting behavior and perceived discomfort during prolonged real driving on varied road types.
    Lantoine P; Lecocq M; Bougard C; Dousset E; Marqueste T; Bourdin C; Allègre JM; Bauvineau L; Mesure S
    PLoS One; 2021; 16(11):e0259934. PubMed ID: 34784401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of seat parameters and sitters' anthropometric dimensions on seat profile and optimal compressed seat pan surface.
    Wang X; Cardoso M; Beurier G
    Appl Ergon; 2018 Nov; 73():13-21. PubMed ID: 30098628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Case Study on the Effects of Foam and Seat Pan Inclination on the Deformation of Seated Buttocks Using MRI.
    Wang X; Savonnet L; Capbern L; Duprey S
    IISE Trans Occup Ergon Hum Factors; 2021; 9(1):23-32. PubMed ID: 34569437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering movement into automotive seating: Does the driver feel more comfortable and refreshed?
    Varela M; Gyi D; Mansfield N; Picton R; Hirao A; Furuya T
    Appl Ergon; 2019 Jan; 74():214-220. PubMed ID: 30487102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Influence of Static Factors on Seating Comfort of Motorcycles: An Initial Investigation.
    Velagapudi SP; Ray GG
    Hum Factors; 2020 Feb; 62(1):55-63. PubMed ID: 31539286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the design of a lightweight, sustainable and comfortable aircraft seat.
    Kokorikou A; Vink P; de Pauw IC; Braca A
    Work; 2016 Jul; 54(4):941-54. PubMed ID: 27447414
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model construction and analysis of ride comfort for high-speed railway seat cushions.
    Tang Z; Liu Z; Tang Y; Dou J; Xu C; Wang L
    Work; 2021; 68(s1):S223-S229. PubMed ID: 33337421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing a floor plan using aircraft seat comfort knowledge by aircraft interior experts.
    Anjani S; Song Y; Vink P
    Work; 2021; 68(s1):S7-S18. PubMed ID: 33337403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ergonomic evaluation of a new truck seat design: a field study.
    Cardoso M; Fulton F; McKinnon C; Callaghan JP; Johnson MJ; Albert WJ
    Int J Occup Saf Ergon; 2019 Sep; 25(3):331-343. PubMed ID: 28812453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A methodology using in-chair movements as an objective measure of discomfort for the purpose of statistically distinguishing between similar seat surfaces.
    Cascioli V; Liu Z; Heusch A; McCarthy PW
    Appl Ergon; 2016 May; 54():100-9. PubMed ID: 26851469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Definition and validation of a comfort index calculation method for office seats].
    Taboga P; Marcolin F; Bordignon M; Antonutto G
    Med Lav; 2012; 103(1):58-67. PubMed ID: 22486076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model-based approach for the analysis of aircraft seating comfort.
    Vanacore A; Lanzotti A; Percuoco C; Capasso A; Vitolo B
    Work; 2021; 68(s1):S251-S255. PubMed ID: 33337425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neck posture and muscle activity in a reclined business class aircraft seat watching IFE with and without head support.
    Smulders M; Naddeo A; Cappetti N; van Grondelle ED; Schultheis U; Vink P
    Appl Ergon; 2019 Sep; 79():25-37. PubMed ID: 31109459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuromuscular fatigue profiles depends on seat feature during long duration driving on a static simulator.
    Lecocq M; Lantoine P; Bougard C; Allègre JM; Bauvineau L; Bourdin C; Marqueste T; Dousset E
    Appl Ergon; 2020 Sep; 87():103118. PubMed ID: 32501249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The application of SEAT values for predicting how compliant seats with backrests influence vibration discomfort.
    Basri B; Griffin MJ
    Appl Ergon; 2014 Nov; 45(6):1461-74. PubMed ID: 24793821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EVALUATION OF AGRICULTURAL TRACTOR SEAT COMFORT WITH A NEW PROTOCOL BASED ON PRESSURE DISTRIBUTION ASSESSMENT.
    Bordignon M; Cutini M; Bisaglia C; Taboga P; Marcolin F
    J Agric Saf Health; 2018 Jan; 24(1):13-26. PubMed ID: 29528603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated driving: A biomechanical approach for sleeping positions.
    Stanglmeier MJ; Paternoster FK; Paternoster S; Bichler RJ; Wagner PO; Schwirtz A
    Appl Ergon; 2020 Jul; 86():103103. PubMed ID: 32342893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A biomechanical analysis of active vs static office chair designs.
    Cardoso MR; Cardenas AK; Albert WJ
    Appl Ergon; 2021 Oct; 96():103481. PubMed ID: 34102577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of users' experience and posture in a rotated swivel seating configuration.
    Bohman K; Örtlund R; Kumlin Groth G; Nurbo P; Jakobsson L
    Traffic Inj Prev; 2020 Oct; 21(sup1):S13-S18. PubMed ID: 32835527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.