These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33337851)

  • 41. A Processable Shape Memory Polymer System for Biomedical Applications.
    Hearon K; Wierzbicki MA; Nash LD; Landsman TL; Laramy C; Lonnecker AT; Gibbons MC; Ur S; Cardinal KO; Wilson TS; Wooley KL; Maitland DJ
    Adv Healthc Mater; 2015 Jun; 4(9):1386-98. PubMed ID: 25925212
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controllable Shape Changing and Tristability of Bilayer Composite.
    Wang L; Wang D; Huang S; Guo X; Wan G; Fan J; Chen Z
    ACS Appl Mater Interfaces; 2019 May; 11(18):16881-16887. PubMed ID: 30983314
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Remotely Triggered Assembly of 3D Mesostructures Through Shape-Memory Effects.
    Park JK; Nan K; Luan H; Zheng N; Zhao S; Zhang H; Cheng X; Wang H; Li K; Xie T; Huang Y; Zhang Y; Kim S; Rogers JA
    Adv Mater; 2019 Dec; 31(52):e1905715. PubMed ID: 31721341
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic Imine Bond-Based Shape Memory Polymers with Permanent Shape Reconfigurability for 4D Printing.
    Miao JT; Ge M; Peng S; Zhong J; Li Y; Weng Z; Wu L; Zheng L
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40642-40651. PubMed ID: 31577114
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temperature memory effect in amorphous shape memory polymers.
    Yu K; Qi HJ
    Soft Matter; 2014 Dec; 10(47):9423-32. PubMed ID: 25354272
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automatically Programmable Shape-Memory Polymers Based on Asymmetric Swelling of Bilayer Structures.
    Tang J; Zhou Y; Wan L; Huang F
    Macromol Rapid Commun; 2018 May; 39(9):e1800039. PubMed ID: 29517176
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis and characterization of biobased isosorbide-containing copolyesters as shape memory polymers for biomedical applications.
    Kang H; Li M; Tang Z; Xue J; Hu X; Zhang L; Guo B
    J Mater Chem B; 2014 Dec; 2(45):7877-7886. PubMed ID: 32262077
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two-Way Reversible Shape Memory Polymers Containing Polydopamine Nanospheres: Light Actuation, Robotic Locomotion, and Artificial Muscles.
    Wang K; Zhu XX
    ACS Biomater Sci Eng; 2018 Aug; 4(8):3099-3106. PubMed ID: 33435029
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dual-Spun Shape Memory Elastomeric Composites.
    Robertson JM; Birjandi Nejad H; Mather PT
    ACS Macro Lett; 2015 Apr; 4(4):436-440. PubMed ID: 35596309
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inorganic-organic shape memory polymer (SMP) foams with highly tunable properties.
    Zhang D; Petersen KM; Grunlan MA
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):186-91. PubMed ID: 23227875
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-Temperature-Aging Induced Sequential Recovery of Shape Memory Nitrile Butadiene Rubber Composites.
    Zhang J; Liu X; Zao W; Feng H; Hou Y; Huo A
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10376-10387. PubMed ID: 33605719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New design strategy for reversible plasticity shape memory polymers with deformable glassy aggregates.
    Lin T; Tang Z; Guo B
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21060-8. PubMed ID: 25389952
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shape memory polymer composites (SMPCs) using interconnected nanowire network foams as reinforcements.
    Chen Y; Kazerooni NA; Srinivasa A; Chapkin WA; Sihn S; Roy AK; Vaddiraju S
    Nanotechnology; 2022 Nov; 34(5):. PubMed ID: 36301680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering.
    Xie M; Wang L; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6772-81. PubMed ID: 25742188
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biobased poly(propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications.
    Guo B; Chen Y; Lei Y; Zhang L; Zhou WY; Rabie AB; Zhao J
    Biomacromolecules; 2011 Apr; 12(4):1312-21. PubMed ID: 21381645
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Smart Shape-Memory Polymeric String for the Contraction of Blood Vessels in Fetal Surgery of Sacrococcygeal Teratoma.
    Fulati A; Uto K; Iwanaga M; Watanabe M; Ebara M
    Adv Healthc Mater; 2022 Jul; 11(13):e2200050. PubMed ID: 35385611
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physical Microfabrication of Shape-Memory Polymer Systems via Bicomponent Fiber Spinning.
    Tallury SS; Pourdeyhimi B; Pasquinelli MA; Spontak RJ
    Macromol Rapid Commun; 2016 Nov; 37(22):1837-1843. PubMed ID: 27711987
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photo-Driven Self-Healing of Arbitrary Nondestructive Damage in Polyethylene-Based Nanocomposites.
    Yu P; Guo XS; Bao RY; Liu ZY; Yang MB; Yang W
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1650-1657. PubMed ID: 31822066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.