These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33337851)

  • 61. Parameter Identification and Validation of Shape-Memory Polymers within the Framework of Finite Strain Viscoelasticity.
    Ghobadi E; Shutov A; Steeb H
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921751
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Smart Shape-Memory Polymeric String for the Contraction of Blood Vessels in Fetal Surgery of Sacrococcygeal Teratoma.
    Fulati A; Uto K; Iwanaga M; Watanabe M; Ebara M
    Adv Healthc Mater; 2022 Jul; 11(13):e2200050. PubMed ID: 35385611
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Physical Microfabrication of Shape-Memory Polymer Systems via Bicomponent Fiber Spinning.
    Tallury SS; Pourdeyhimi B; Pasquinelli MA; Spontak RJ
    Macromol Rapid Commun; 2016 Nov; 37(22):1837-1843. PubMed ID: 27711987
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Photo-Driven Self-Healing of Arbitrary Nondestructive Damage in Polyethylene-Based Nanocomposites.
    Yu P; Guo XS; Bao RY; Liu ZY; Yang MB; Yang W
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1650-1657. PubMed ID: 31822066
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol.
    Boyle AJ; Weems AC; Hasan SM; Nash LD; Monroe MBB; Maitland DJ
    Smart Mater Struct; 2016; 25():. PubMed ID: 30034120
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites.
    Yu YJ; Infanger S; Grunlan MA; Maitland DJ
    J Appl Polym Sci; 2015 Jan; 132(1):. PubMed ID: 25663711
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development of zwitterionic copolymers with multi-shape memory effects and moisture-sensitive shape memory effects.
    Chen S; Mo F; Stadler FJ; Chen S; Ge Z; Zhuo H
    J Mater Chem B; 2015 Aug; 3(32):6645-6655. PubMed ID: 32262800
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization.
    Li Z; Zhang X; Wang S; Yang Y; Qin B; Wang K; Xie T; Wei Y; Ji Y
    Chem Sci; 2016 Jul; 7(7):4741-4747. PubMed ID: 30155125
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Medical applications of shape memory polymers.
    Sokolowski W; Metcalfe A; Hayashi S; Yahia L; Raymond J
    Biomed Mater; 2007 Mar; 2(1):S23-7. PubMed ID: 18458416
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.
    Fang Y; Ni Y; Leo SY; Wang B; Basile V; Taylor C; Jiang P
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23650-9. PubMed ID: 26447681
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tunable Diffractive Optical Elements Based on Shape-Memory Polymers Fabricated via Hot Embossing.
    Schauer S; Meier T; Reinhard M; Röhrig M; Schneider M; Heilig M; Kolew A; Worgull M; Hölscher H
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9423-30. PubMed ID: 26998646
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Direct-Write Fabrication of 4D Active Shape-Changing Structures Based on a Shape Memory Polymer and Its Nanocomposite.
    Wei H; Zhang Q; Yao Y; Liu L; Liu Y; Leng J
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):876-883. PubMed ID: 27997104
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Water-induced poly(vinyl alcohol)/carbon quantum dot nanocomposites with tunable shape recovery performance and fluorescence.
    Wang W; Lai H; Cheng Z; Kang H; Wang Y; Zhang H; Wang J; Liu Y
    J Mater Chem B; 2018 Dec; 6(45):7444-7450. PubMed ID: 32254746
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Review of Progress in Shape Memory Epoxies and Their Composites.
    Karger-Kocsis J; Kéki S
    Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966068
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water.
    Zhang B; DeBartolo JE; Song J
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4450-4456. PubMed ID: 28125208
    [TBL] [Abstract][Full Text] [Related]  

  • 76. High-energy-density shape memory materials with ultrahigh strain for reconfigurable artificial muscles.
    Zheng X; Chen Y; Chen C; Chen Z; Guo Y; Li H; Liu H
    J Mater Chem B; 2021 Sep; 9(36):7371-7380. PubMed ID: 34551055
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bio-Based, Self-Healing, Recyclable, Reconfigurable Multifunctional Polymers with Both One-Way and Two-Way Shape Memory Properties.
    Qi X; Pan C; Zhang L; Yue D
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3497-3506. PubMed ID: 36598772
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Thermoreversibly crosslinked poly(ε-caprolactone) as recyclable shape-memory polymer network.
    Defize T; Riva R; Raquez JM; Dubois P; Jérôme C; Alexandre M
    Macromol Rapid Commun; 2011 Aug; 32(16):1264-9. PubMed ID: 21692124
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Thermally Activated Composite with Two-Way and Multi-Shape Memory Effects.
    Basit A; L'Hostis G; Pac MJ; Durand B
    Materials (Basel); 2013 Sep; 6(9):4031-4045. PubMed ID: 28788316
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Inductively heated shape memory polymer for the magnetic actuation of medical devices.
    Buckley PR; McKinley GH; Wilson TS; Small W; Benett WJ; Bearinger JP; McElfresh MW; Maitland DJ
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2075-83. PubMed ID: 17019872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.