These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 33337868)
1. PEG Equilibrium Partitioning in the α-Hemolysin Channel: Neutral Polymer Interaction with Channel Charges. Aguilella-Arzo M; Aguilella VM Biomacromolecules; 2021 Feb; 22(2):410-418. PubMed ID: 33337868 [TBL] [Abstract][Full Text] [Related]
2. The charge state of an ion channel controls neutral polymer entry into its pore. Bezrukov SM; Kasianowicz JJ Eur Biophys J; 1997; 26(6):471-6. PubMed ID: 9404007 [TBL] [Abstract][Full Text] [Related]
3. Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin. Aksoyoglu MA; Podgornik R; Bezrukov SM; Gurnev PA; Muthukumar M; Parsegian VA Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9003-8. PubMed ID: 27466408 [TBL] [Abstract][Full Text] [Related]
4. Probing protein nanopores with poly(ethylene glycol)s. Liu W; Nestorovich EM Proteomics; 2022 Mar; 22(5-6):e2100055. PubMed ID: 35030301 [TBL] [Abstract][Full Text] [Related]
5. Pore-forming toxins as tools for polymer analytics: From sizing to sequencing. Piguet F; Ensslen T; Bakshloo MA; Talarimoghari M; Ouldali H; Baaken G; Zaitseva E; Pastoriza-Gallego M; Behrends JC; Oukhaled A Methods Enzymol; 2021; 649():587-634. PubMed ID: 33712201 [TBL] [Abstract][Full Text] [Related]
6. Microscopic Mechanism of Macromolecular Crowder-Assisted DNA Capture and Translocation through Biological Nanopores. Punia B; Chaudhury S J Phys Chem B; 2023 Jul; 127(26):5850-5858. PubMed ID: 37294938 [TBL] [Abstract][Full Text] [Related]
7. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis. Boukhet M; Piguet F; Ouldali H; Pastoriza-Gallego M; Pelta J; Oukhaled A Nanoscale; 2016 Nov; 8(43):18352-18359. PubMed ID: 27762420 [TBL] [Abstract][Full Text] [Related]
8. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Reiner JE; Kasianowicz JJ; Nablo BJ; Robertson JW Proc Natl Acad Sci U S A; 2010 Jul; 107(27):12080-5. PubMed ID: 20566890 [TBL] [Abstract][Full Text] [Related]
9. High-Resolution Size-Discrimination of Single Nonionic Synthetic Polymers with a Highly Charged Biological Nanopore. Baaken G; Halimeh I; Bacri L; Pelta J; Oukhaled A; Behrends JC ACS Nano; 2015 Jun; 9(6):6443-9. PubMed ID: 26028280 [TBL] [Abstract][Full Text] [Related]
10. Interactions of a Polypeptide with a Protein Nanopore Under Crowding Conditions. Larimi MG; Mayse LA; Movileanu L ACS Nano; 2019 Apr; 13(4):4469-4477. PubMed ID: 30925041 [TBL] [Abstract][Full Text] [Related]
11. Size-dependent interaction of a 3-arm star poly(ethylene glycol) with two biological nanopores. Talarimoghari M; Baaken G; Hanselmann R; Behrends JC Eur Phys J E Soft Matter; 2018 Jun; 41(6):77. PubMed ID: 29926213 [TBL] [Abstract][Full Text] [Related]
12. Theory of polymer-nanopore interactions refined using molecular dynamics simulations. Balijepalli A; Robertson JW; Reiner JE; Kasianowicz JJ; Pastor RW J Am Chem Soc; 2013 May; 135(18):7064-72. PubMed ID: 23590258 [TBL] [Abstract][Full Text] [Related]
13. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids. Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305 [TBL] [Abstract][Full Text] [Related]
14. Placement of oppositely charged aminoacids at a polypeptide termini determines the voltage-controlled braking of polymer transport through nanometer-scale pores. Asandei A; Chinappi M; Lee JK; Ho Seo C; Mereuta L; Park Y; Luchian T Sci Rep; 2015 Jun; 5():10419. PubMed ID: 26029865 [TBL] [Abstract][Full Text] [Related]
15. Partitioning of differently sized poly(ethylene glycol)s into OmpF porin. Rostovtseva TK; Nestorovich EM; Bezrukov SM Biophys J; 2002 Jan; 82(1 Pt 1):160-9. PubMed ID: 11751305 [TBL] [Abstract][Full Text] [Related]
16. Experimental and simulation studies of unusual current blockade induced by translocation of small oxidized PEG through a single nanopore. Cabello-Aguilar S; Abou Chaaya A; Picaud F; Bechelany M; Pochat-Bohatier C; Yesylevskyy S; Kraszewski S; Bechelany MC; Rossignol F; Balanzat E; Janot JM; Miele P; Dejardin P; Balme S Phys Chem Chem Phys; 2014 Sep; 16(33):17883-92. PubMed ID: 25045766 [TBL] [Abstract][Full Text] [Related]
17. Transport of long neutral polymers in the semidilute regime through a protein nanopore. Oukhaled AG; Biance AL; Pelta J; Auvray L; Bacri L Phys Rev Lett; 2012 Feb; 108(8):088104. PubMed ID: 22463579 [TBL] [Abstract][Full Text] [Related]
18. Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel. Merzlyak PG; Yuldasheva LN; Rodrigues CG; Carneiro CM; Krasilnikov OV; Bezrukov SM Biophys J; 1999 Dec; 77(6):3023-33. PubMed ID: 10585924 [TBL] [Abstract][Full Text] [Related]
19. Interaction forces and reversible collapse of a polymer brush-gated nanopore. Lim RY; Deng J ACS Nano; 2009 Oct; 3(10):2911-8. PubMed ID: 19728698 [TBL] [Abstract][Full Text] [Related]
20. Partitioning of individual flexible polymers into a nanoscopic protein pore. Movileanu L; Cheley S; Bayley H Biophys J; 2003 Aug; 85(2):897-910. PubMed ID: 12885637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]