BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33337897)

  • 1. Plasmonic Temperature-Programmed Desorption.
    Murphy CJ; Ardy Nugroho FA; Härelind H; Hellberg L; Langhammer C
    Nano Lett; 2021 Jan; 21(1):353-359. PubMed ID: 33337897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reflection absorption infrared spectroscopy and temperature programmed desorption investigations of the interaction of methanol with a graphite surface.
    Bolina AS; Wolff AJ; Brown WA
    J Chem Phys; 2005 Jan; 122(4):44713. PubMed ID: 15740289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption energies, inter-adsorbate interactions, and the two binding sites within monolayer benzene on Ag(111).
    Rockey TJ; Yang M; Dai HL
    J Phys Chem B; 2006 Oct; 110(40):19973-8. PubMed ID: 17020384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the reactivity of ZnO and Au/ZnO nanoparticles by methanol adsorption: a TPD and DRIFTS study.
    Kähler K; Holz MC; Rohe M; Strunk J; Muhler M
    Chemphyschem; 2010 Aug; 11(12):2521-9. PubMed ID: 20635374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desorption Kinetics of Benzene and Cyclohexane from a Graphene Surface.
    Smith RS; Kay BD
    J Phys Chem B; 2018 Jan; 122(2):587-594. PubMed ID: 28677971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between water molecules and zinc sulfide nanoparticles studied by temperature-programmed desorption and molecular dynamics simulations.
    Zhang H; Rustad JR; Banfield JF
    J Phys Chem A; 2007 Jun; 111(23):5008-14. PubMed ID: 17518448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TPD and FT-IRAS investigation of ethylene oxide (EtO) adsorption on a Au(211) stepped surface.
    Kim J; Koel BE
    Langmuir; 2005 Apr; 21(9):3886-91. PubMed ID: 15835951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: a review.
    Niwa M; Katada N
    Chem Rec; 2013 Oct; 13(5):432-55. PubMed ID: 23868494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of temperature-programmed desorption of high-coverage hydrogen on Pt(211), Pt(221), Pt(533) and Pt(553) based on density functional theory calculations.
    Kolb MJ; Garden AL; Badan C; Garrido Torres JA; Skúlason E; Juurlink LBF; Jónsson H; Koper MTM
    Phys Chem Chem Phys; 2019 Aug; 21(31):17142-17151. PubMed ID: 31339149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Temperature-Programmed Desorption via Equilibrium Thermodynamics.
    Schmid M; Parkinson GS; Diebold U
    ACS Phys Chem Au; 2023 Jan; 3(1):44-62. PubMed ID: 36718262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desorption of Benzene, 1,3,5-Trifluorobenzene, and Hexafluorobenzene from a Graphene Surface: The Effect of Lateral Interactions on the Desorption Kinetics.
    Smith RS; Kay BD
    J Phys Chem Lett; 2018 May; 9(10):2632-2638. PubMed ID: 29724099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Reactions on Pd-Au Bimetallic Model Catalysts.
    Han S; Mullins CB
    Acc Chem Res; 2021 Jan; 54(2):379-387. PubMed ID: 33371669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Desorption trends of small alcohols and the disruption of intermolecular interactions at defect sites on Au(111).
    Maxwell EM; Garber LA; Rogers CJ; Galgano AJ; Baker JS; Kaleem H; Boyle DT; Berry JL; Baber AE
    Phys Chem Chem Phys; 2022 Oct; 24(38):23884-23892. PubMed ID: 36165463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Desorption Kinetics of Carbon Dioxide from a Graphene-Covered Pt(111) Surface.
    Smith RS; Kay BD
    J Phys Chem A; 2019 Apr; 123(15):3248-3254. PubMed ID: 30913386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic and Kinetic Measurements of Elementary Surface Reactions Using Temperature-Programmed X-ray Photoelectron Spectroscopy.
    Bavisotto R; Tysoe WT
    Langmuir; 2024 Jan; 40(3):1817-1824. PubMed ID: 38198692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-programmed desorption of large molecules: influence of thin film structure and origin of intermolecular repulsion.
    Dombrowski PM; Kachel SR; Neuhaus L; Gottfried JM; Witte G
    Nanoscale; 2021 Aug; 13(32):13816-13826. PubMed ID: 34477656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): The importance of hydrogen bonding between adsorbed species.
    Shiozawa Y; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2015 Dec; 143(23):234707. PubMed ID: 26696070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Edge-on bonding of benzene molecules in the second adsorbed layer on Cu(110).
    Lee J; Dougherty DB; Yates JT
    J Phys Chem B; 2006 Aug; 110(32):15645-9. PubMed ID: 16898704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methanol Adsorption and Reaction on Samaria Thin Films on Pt(111).
    Jhang JH; Schaefer A; Zielasek V; Weaver JF; Bäumer M
    Materials (Basel); 2015 Sep; 8(9):6228-6256. PubMed ID: 28793562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.