BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 33338030)

  • 1. FGF23 signalling and physiology.
    Ho BB; Bergwitz C
    J Mol Endocrinol; 2021 Feb; 66(2):R23-R32. PubMed ID: 33338030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural biology of the FGF19 subfamily.
    Beenken A; Mohammadi M
    Adv Exp Med Biol; 2012; 728():1-24. PubMed ID: 22396159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pleiotropic Actions of FGF23.
    Erben RG
    Toxicol Pathol; 2017 Oct; 45(7):904-910. PubMed ID: 29096595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo evidence for an interplay of FGF23/Klotho/PTH axis on the phosphate handling in renal proximal tubules.
    Ide N; Ye R; Courbebaisse M; Olauson H; Densmore MJ; Larsson TE; Hanai JI; Lanske B
    Am J Physiol Renal Physiol; 2018 Nov; 315(5):F1261-F1270. PubMed ID: 29993278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FGF23 activates injury-primed renal fibroblasts via FGFR4-dependent signalling and enhancement of TGF-β autoinduction.
    Smith ER; Holt SG; Hewitson TD
    Int J Biochem Cell Biol; 2017 Nov; 92():63-78. PubMed ID: 28919046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats.
    Leifheit-Nestler M; Grabner A; Hermann L; Richter B; Schmitz K; Fischer DC; Yanucil C; Faul C; Haffner D
    Nephrol Dial Transplant; 2017 Sep; 32(9):1493-1503. PubMed ID: 28339837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of unliganded FGF receptor by extracellular phosphate potentiates proteolytic protection of FGF23 by its O-glycosylation.
    Takashi Y; Kosako H; Sawatsubashi S; Kinoshita Y; Ito N; Tsoumpra MK; Nangaku M; Abe M; Matsuhisa M; Kato S; Matsumoto T; Fukumoto S
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11418-11427. PubMed ID: 31097591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of FGF23 production and phosphate metabolism by bone-kidney interactions.
    Agoro R; White KE
    Nat Rev Nephrol; 2023 Mar; 19(3):185-193. PubMed ID: 36624273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FGF23 and Bone and Mineral Metabolism.
    Fukumoto S
    Handb Exp Pharmacol; 2020; 262():281-308. PubMed ID: 31792685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF23 and syndromes of abnormal renal phosphate handling.
    Bergwitz C; Jüppner H
    Adv Exp Med Biol; 2012; 728():41-64. PubMed ID: 22396161
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Al Rifai O; Susan-Resiga D; Essalmani R; Creemers JWM; Seidah NG; Ferron M
    Front Endocrinol (Lausanne); 2021; 12():690681. PubMed ID: 34149625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease.
    Yanucil C; Kentrup D; Campos I; Czaya B; Heitman K; Westbrook D; Osis G; Grabner A; Wende AR; Vallejo J; Wacker MJ; Navarro-Garcia JA; Ruiz-Hurtado G; Zhang F; Song Y; Linhardt RJ; White K; Kapiloff MS; Faul C
    Kidney Int; 2022 Aug; 102(2):261-279. PubMed ID: 35513125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for FGF hormone signalling.
    Chen L; Fu L; Sun J; Huang Z; Fang M; Zinkle A; Liu X; Lu J; Pan Z; Wang Y; Liang G; Li X; Chen G; Mohammadi M
    Nature; 2023 Jun; 618(7966):862-870. PubMed ID: 37286607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic rescue of glycosylation-deficient Fgf23 in the Galnt3 knockout mouse.
    Ichikawa S; Gray AK; Padgett LR; Allen MR; Clinkenbeard EL; Sarpa NM; White KE; Econs MJ
    Endocrinology; 2014 Oct; 155(10):3891-8. PubMed ID: 25051439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct and indirect effects of fibroblast growth factor 23 on the heart.
    Nakano T; Kishimoto H; Tokumoto M
    Front Endocrinol (Lausanne); 2023; 14():1059179. PubMed ID: 36909314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis.
    Tagliabracci VS; Engel JL; Wiley SE; Xiao J; Gonzalez DJ; Nidumanda Appaiah H; Koller A; Nizet V; White KE; Dixon JE
    Proc Natl Acad Sci U S A; 2014 Apr; 111(15):5520-5. PubMed ID: 24706917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Discovery of alpha-Klotho and FGF23 unveiled new insight into calcium and phosphate homeostasis].
    Nabeshima Y
    Clin Calcium; 2008 Jul; 18(7):923-34. PubMed ID: 18591743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate-sensing and regulatory mechanism of FGF23 production.
    Takashi Y; Fukumoto S
    J Endocrinol Invest; 2020 Jul; 43(7):877-883. PubMed ID: 32140858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Klotho gene, phosphocalcic metabolism, and survival in dialysis.
    Torres PU; Prié D; Beck L; De Brauwere D; Leroy C; Friedlander G
    J Ren Nutr; 2009 Jan; 19(1):50-6. PubMed ID: 19121771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.