These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 33338052)
1. Genetic analysis reveals an east-west divide within North American Vitis species that mirrors their resistance to Pierce's disease. Riaz S; Tenscher AC; Heinitz CC; Huerta-Acosta KG; Walker MA PLoS One; 2020; 15(12):e0243445. PubMed ID: 33338052 [TBL] [Abstract][Full Text] [Related]
2. Genetic characterization of Vitis germplasm collected from the southwestern US and Mexico to expedite Pierce's disease-resistance breeding. Riaz S; Huerta-Acosta K; Tenscher AC; Walker MA Theor Appl Genet; 2018 Jul; 131(7):1589-1602. PubMed ID: 29713731 [TBL] [Abstract][Full Text] [Related]
3. Inheritance of resistance to Xylella fastidiosa within a Vitis rupestris x Vitis arizonica hybrid population. Krivanek AF; Famula TR; Tenscher A; Walker MA Theor Appl Genet; 2005 Jun; 111(1):110-9. PubMed ID: 15864525 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of ESTs involved in grape responses to Xylella fastidiosa infection. Lin H; Doddapaneni H; Takahashi Y; Walker MA BMC Plant Biol; 2007 Feb; 7():8. PubMed ID: 17316447 [TBL] [Abstract][Full Text] [Related]
5. Grape Cultivar and Sap Culture Conditions Affect the Development of Xylella fastidiosa Phenotypes Associated with Pierce's Disease. Hao L; Zaini PA; Hoch HC; Burr TJ; Mowery P PLoS One; 2016; 11(8):e0160978. PubMed ID: 27508296 [TBL] [Abstract][Full Text] [Related]
6. Identification of mildew resistance in wild and cultivated Central Asian grape germplasm. Riaz S; Boursiquot JM; Dangl GS; Lacombe T; Laucou V; Tenscher AC; Walker MA BMC Plant Biol; 2013 Oct; 13():149. PubMed ID: 24093598 [TBL] [Abstract][Full Text] [Related]
7. Assessment of the process of movement of Xylella fastidiosa within susceptible and resistant grape cultivars. Baccari C; Lindow SE Phytopathology; 2011 Jan; 101(1):77-84. PubMed ID: 20822432 [TBL] [Abstract][Full Text] [Related]
8. Identification and molecular mapping of PdR1, a primary resistance gene to Pierce's disease in Vitis. Krivanek AF; Riaz S; Walker MA Theor Appl Genet; 2006 Apr; 112(6):1125-31. PubMed ID: 16435126 [TBL] [Abstract][Full Text] [Related]
9. Long-read, chromosome-scale assembly of Vitis rotundifolia cv. Carlos and its unique resistance to Xylella fastidiosa subsp. fastidiosa. Huff M; Hulse-Kemp AM; Scheffler BE; Youngblood RC; Simpson SA; Babiker E; Staton M BMC Genomics; 2023 Jul; 24(1):409. PubMed ID: 37474911 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the Xylella fastidiosa PD1311 gene mutant and its suppression of Pierce's disease on grapevines. Hao L; Johnson K; Cursino L; Mowery P; Burr TJ Mol Plant Pathol; 2017 Jun; 18(5):684-694. PubMed ID: 27388152 [TBL] [Abstract][Full Text] [Related]
11. Impact of phenolic compounds on progression of Xylella fastidiosa infections in susceptible and PdR1-locus containing resistant grapevines. Wallis CM; Zeilinger AR; Sicard A; Beal DJ; Walker MA; Almeida RPP PLoS One; 2020; 15(8):e0237545. PubMed ID: 32764829 [TBL] [Abstract][Full Text] [Related]
12. Xylella fastidiosa: an examination of a re-emerging plant pathogen. Rapicavoli J; Ingel B; Blanco-Ulate B; Cantu D; Roper C Mol Plant Pathol; 2018 Apr; 19(4):786-800. PubMed ID: 28742234 [TBL] [Abstract][Full Text] [Related]
13. Polysaccharide compositions of intervessel pit membranes contribute to Pierce's disease resistance of grapevines. Sun Q; Greve LC; Labavitch JM Plant Physiol; 2011 Apr; 155(4):1976-87. PubMed ID: 21343427 [TBL] [Abstract][Full Text] [Related]
14. Allopatric Plant Pathogen Population Divergence following Disease Emergence. Castillo AI; Bojanini I; Chen H; Kandel PP; De La Fuente L; Almeida RPP Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33483307 [TBL] [Abstract][Full Text] [Related]
16. Biological Control of Pierce's Disease of Grape by an Endophytic Bacterium. Baccari C; Antonova E; Lindow S Phytopathology; 2019 Feb; 109(2):248-256. PubMed ID: 30540526 [TBL] [Abstract][Full Text] [Related]
17. Pre-inoculation water deficit effects on grapevine physiology, Xylella fastidiosa titers, and Pierce's disease progression. Wallis CM; Gorman Z BMC Res Notes; 2024 Apr; 17(1):119. PubMed ID: 38678272 [TBL] [Abstract][Full Text] [Related]
18. Water deficit modulates the response of Vitis vinifera to the Pierce's disease pathogen Xylella fastidiosa. Choi HK; Iandolino A; da Silva FG; Cook DR Mol Plant Microbe Interact; 2013 Jun; 26(6):643-57. PubMed ID: 23425100 [TBL] [Abstract][Full Text] [Related]
19. Control of Pierce's Disease by Phage. Das M; Bhowmick TS; Ahern SJ; Young R; Gonzalez CF PLoS One; 2015; 10(6):e0128902. PubMed ID: 26107261 [TBL] [Abstract][Full Text] [Related]
20. Refined mapping of the Pierce's disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris x V. arizonica. Riaz S; Krivanek AF; Xu K; Walker MA Theor Appl Genet; 2006 Nov; 113(7):1317-29. PubMed ID: 16960717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]