These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33338052)

  • 41. Diagnosis of Pierce's disease using biomarkers specific to Xylella fastidiosa rRNA and Vitis vinifera gene expression.
    Choi HK; Goes da Silva F; Lim HJ; Iandolino A; Seo YS; Lee SW; Cook DR
    Phytopathology; 2010 Oct; 100(10):1089-99. PubMed ID: 20839944
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of Pierce's disease on leaf and petiole hydraulic conductance in Vitis vinifera cv. Chardonnay.
    Choat B; Gambetta GA; Wada H; Shackel KA; Matthews MA
    Physiol Plant; 2009 Aug; 136(4):384-94. PubMed ID: 19470095
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Initial genetic analysis of Xylella fastidiosa in Texas.
    Morano LD; Bextine BR; Garcia DA; Maddox SV; Gunawan S; Vitovsky NJ; Black MC
    Curr Microbiol; 2008 Apr; 56(4):346-51. PubMed ID: 18172717
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phytohormone and genome variations in Vitis amurensis resistant to downy mildew.
    Yin L; Qu J; Deng S; Liu S; Lu J; Zhang Y
    Genome; 2017 Oct; 60(10):791-796. PubMed ID: 28727939
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proteome Biomarkers in Xylem Reveal Pierce's Disease Tolerance in Grape.
    Katam R; Chibanguza K; Latinwo LM; Smith D
    J Proteomics Bioinform; 2015; 8(9):217-224. PubMed ID: 27019567
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Xylella fastidiosa biocontrol strain EB92-1 genome is very similar and syntenic to Pierce's disease strains.
    Zhang S; Flores-Cruz Z; Kumar D; Chakrabarty P; Hopkins DL; Gabriel DW
    J Bacteriol; 2011 Oct; 193(19):5576-7. PubMed ID: 21914886
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Population structure and adaptation of a bacterial pathogen in California grapevines.
    Vanhove M; Sicard A; Ezennia J; Leviten N; Almeida RPP
    Environ Microbiol; 2020 Jul; 22(7):2625-2638. PubMed ID: 32114707
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Paradigms: examples from the bacterium Xylella fastidiosa.
    Purcell A
    Annu Rev Phytopathol; 2013; 51():339-56. PubMed ID: 23682911
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vitis Resistance to Pierce's Disease Is Characterized by Differential Xylella fastidiosa Populations in Stems and Leaves.
    Krivanek AF; Walker MA
    Phytopathology; 2005 Jan; 95(1):44-52. PubMed ID: 18943835
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce's disease.
    Lindow S; Newman K; Chatterjee S; Baccari C; Lavarone AT; Ionescu M
    Mol Plant Microbe Interact; 2014 Mar; 27(3):244-54. PubMed ID: 24499029
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Introgression among North American wild grapes (Vitis) fuels biotic and abiotic adaptation.
    Morales-Cruz A; Aguirre-Liguori JA; Zhou Y; Minio A; Riaz S; Walker AM; Cantu D; Gaut BS
    Genome Biol; 2021 Sep; 22(1):254. PubMed ID: 34479604
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Control of Pierce's Disease of Grape with
    Lindow S; Koutsoukis R; Meyer K; Baccari C
    Phytopathology; 2024 Mar; 114(3):503-511. PubMed ID: 37913631
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Linking intercontinental biogeographic events to decipher how European vineyards escaped Pierce's disease.
    Moralejo E; Giménez-Romero À; Matías MA
    Proc Biol Sci; 2024 Oct; 291(2032):20241130. PubMed ID: 39353554
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multilocus simple sequence repeat markers for differentiating strains and evaluating genetic diversity of Xylella fastidiosa.
    Lin H; Civerolo EL; Hu R; Barros S; Francis M; Walker MA
    Appl Environ Microbiol; 2005 Aug; 71(8):4888-92. PubMed ID: 16085890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology.
    Redak RA; Purcell AH; Lopes JR; Blua MJ; Mizell RF; Andersen PC
    Annu Rev Entomol; 2004; 49():243-70. PubMed ID: 14651464
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Type II Secreted Lipase/Esterase LesA is a Key Virulence Factor Required for Xylella fastidiosa Pathogenesis in Grapevines.
    Nascimento R; Gouran H; Chakraborty S; Gillespie HW; Almeida-Souza HO; Tu A; Rao BJ; Feldstein PA; Bruening G; Goulart LR; Dandekar AM
    Sci Rep; 2016 Jan; 6():18598. PubMed ID: 26753904
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mathematical modeling of glassy-winged sharpshooter population.
    Yoon JM; Hrynkiv V; Morano L; Nguyen AT; Wilder S; Mitchell F
    Math Biosci Eng; 2014 Jun; 11(3):667-77. PubMed ID: 24506556
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic differences between two strains of Xylella fastidiosa revealed by suppression subtractive hybridization.
    Harakava R; Gabriel DW
    Appl Environ Microbiol; 2003 Feb; 69(2):1315-9. PubMed ID: 12571065
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Grapevine phenolic compounds in xylem sap and tissues are significantly altered during infection by Xylella fastidiosa.
    Wallis CM; Chen J
    Phytopathology; 2012 Sep; 102(9):816-26. PubMed ID: 22671027
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection of Xylella fastidiosa from resistant and susceptible grapevine by tissue sectioning and membrane entrapment immunofluorescence.
    Buzkan N; Kocsis L; Walker MA
    Microbiol Res; 2005; 160(3):225-31. PubMed ID: 16035233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.