BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 33338653)

  • 1. The biochemical and genetic discovery of the SAGA complex.
    Grant PA; Winston F; Berger SL
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194669. PubMed ID: 33338653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SAGA continues: The rise of cis- and trans-histone crosstalk pathways.
    Strahl BD; Briggs SD
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194600. PubMed ID: 32645359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function and regulation of the Spt-Ada-Gcn5-Acetyltransferase (SAGA) deubiquitinase module.
    Cornelio-Parra DV; Goswami R; Costanzo K; Morales-Sosa P; Mohan RD
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194630. PubMed ID: 32911111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role for Nhp6, Gcn5, and the Swi/Snf complex in stimulating formation of the TATA-binding protein-TFIIA-DNA complex.
    Biswas D; Imbalzano AN; Eriksson P; Yu Y; Stillman DJ
    Mol Cell Biol; 2004 Sep; 24(18):8312-21. PubMed ID: 15340090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription.
    Bonnet J; Wang CY; Baptista T; Vincent SD; Hsiao WC; Stierle M; Kao CF; Tora L; Devys D
    Genes Dev; 2014 Sep; 28(18):1999-2012. PubMed ID: 25228644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAGA and TFIID: Friends of TBP drifting apart.
    Timmers HTM
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194604. PubMed ID: 32673655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What do the structures of GCN5-containing complexes teach us about their function?
    Helmlinger D; Papai G; Devys D; Tora L
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194614. PubMed ID: 32739556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection of coactivator requirement at RNR3 reveals unexpected contributions from TFIID and SAGA.
    Zhang H; Kruk JA; Reese JC
    J Biol Chem; 2008 Oct; 283(41):27360-27368. PubMed ID: 18682387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of TATA-binding protein binding by the SAGA complex and the Nhp6 high-mobility group protein.
    Yu Y; Eriksson P; Bhoite LT; Stillman DJ
    Mol Cell Biol; 2003 Mar; 23(6):1910-21. PubMed ID: 12612066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Ada2/Ada3/Gcn5/Sgf29 histone acetyltransferase module.
    Espinola-Lopez JM; Tan S
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194629. PubMed ID: 32890768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the transcription coactivator SAGA.
    Wang H; Dienemann C; Stützer A; Urlaub H; Cheung ACM; Cramer P
    Nature; 2020 Jan; 577(7792):717-720. PubMed ID: 31969703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of SAGA and mechanism of TBP deposition on gene promoters.
    Papai G; Frechard A; Kolesnikova O; Crucifix C; Schultz P; Ben-Shem A
    Nature; 2020 Jan; 577(7792):711-716. PubMed ID: 31969704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation.
    Bian C; Xu C; Ruan J; Lee KK; Burke TL; Tempel W; Barsyte D; Li J; Wu M; Zhou BO; Fleharty BE; Paulson A; Allali-Hassani A; Zhou JQ; Mer G; Grant PA; Workman JL; Zang J; Min J
    EMBO J; 2011 Jun; 30(14):2829-42. PubMed ID: 21685874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The promiscuity of the SAGA complex subunits: Multifunctional or moonlighting proteins?
    Nuño-Cabanes C; Rodríguez-Navarro S
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194607. PubMed ID: 32712338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MYC interacts with the human STAGA coactivator complex via multivalent contacts with the GCN5 and TRRAP subunits.
    Zhang N; Ichikawa W; Faiola F; Lo SY; Liu X; Martinez E
    Biochim Biophys Acta; 2014 May; 1839(5):395-405. PubMed ID: 24705139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo.
    Govind CK; Yoon S; Qiu H; Govind S; Hinnebusch AG
    Mol Cell Biol; 2005 Jul; 25(13):5626-38. PubMed ID: 15964818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-histone protein acetylation by the evolutionarily conserved GCN5 and PCAF acetyltransferases.
    Downey M
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194608. PubMed ID: 32711095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATAC-king the complexity of SAGA during evolution.
    Spedale G; Timmers HT; Pijnappel WW
    Genes Dev; 2012 Mar; 26(6):527-41. PubMed ID: 22426530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAGA Is a General Cofactor for RNA Polymerase II Transcription.
    Baptista T; Grünberg S; Minoungou N; Koster MJE; Timmers HTM; Hahn S; Devys D; Tora L
    Mol Cell; 2017 Oct; 68(1):130-143.e5. PubMed ID: 28918903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of new Spt3 and TATA-binding protein mutants of Saccharomyces cerevisiae: Spt3 TBP allele-specific interactions and bypass of Spt8.
    Laprade L; Rose D; Winston F
    Genetics; 2007 Dec; 177(4):2007-17. PubMed ID: 18073420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.