These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33338692)

  • 1. Effects of salt marsh plants on mobility and bioavailability of REE in estuarine sediments.
    Brito P; Caetano M; Martins MD; Caçador I
    Sci Total Environ; 2021 Mar; 759():144314. PubMed ID: 33338692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yttrium and rare earth elements fractionation in salt marsh halophyte plants.
    Brito P; Malvar M; Galinha C; Caçador I; Canário J; Araújo MF; Raimundo J
    Sci Total Environ; 2018 Dec; 643():1117-1126. PubMed ID: 30189529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima.
    Reboreda R; Caçador I
    Chemosphere; 2007 Nov; 69(10):1655-61. PubMed ID: 17599388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Halophyte vegetation influences in salt marsh retention capacity for heavy metals.
    Reboreda R; Caçador I
    Environ Pollut; 2007 Mar; 146(1):147-54. PubMed ID: 16996176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ability of salt marsh plants for TBT remediation in sediments.
    Carvalho PN; Basto MC; Silva MF; Machado A; Bordalo AA; Vasconcelos MT
    Environ Sci Pollut Res Int; 2010 Jul; 17(6):1279-86. PubMed ID: 20217262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal).
    Duarte B; Caetano M; Almeida PR; Vale C; Caçador I
    Environ Pollut; 2010 May; 158(5):1661-8. PubMed ID: 20036450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments.
    Almeida CM; Mucha AP; Bordalo AA; Vasconcelos MT
    Sci Total Environ; 2008 Sep; 403(1-3):188-95. PubMed ID: 18606437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal).
    Santos-Echeandía J; Vale C; Caetano M; Pereira P; Prego R
    Mar Environ Res; 2010 Dec; 70(5):358-67. PubMed ID: 20727578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobility of Pb in salt marshes recorded by total content and stable isotopic signature.
    Caetano M; Fonseca N; Cesário Carlos Vale R
    Sci Total Environ; 2007 Jul; 380(1-3):84-92. PubMed ID: 17320933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site- and species-specific metal concentrations, mobility, and bioavailability in sediment, flora, and fauna of a southeastern United States salt marsh.
    Donaher SE; Estes SL; Dunn RP; Gonzales AK; Powell BA; Martinez NE
    Sci Total Environ; 2024 Apr; 922():171262. PubMed ID: 38417525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stock and losses of trace metals from salt marsh plants.
    Caçador I; Caetano M; Duarte B; Vale C
    Mar Environ Res; 2009 Mar; 67(2):75-82. PubMed ID: 19110308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal contamination: search for an efficient biomarker.
    Duarte B; Santos D; Ca Ador I
    Funct Plant Biol; 2013 Aug; 40(9):922-930. PubMed ID: 32481161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for preferential depths of metal retention in roots of salt marsh plants.
    Caetano M; Vale C; Cesário R; Fonseca N
    Sci Total Environ; 2008 Feb; 390(2-3):466-74. PubMed ID: 18036637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes.
    Caçador I; Vale C; Catarino F
    Mar Environ Res; 2000 Apr; 49(3):279-90. PubMed ID: 11285730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytochelatins and monothiols in salt marsh plants and their relation with metal tolerance.
    Negrin VL; Teixeira B; Godinho RM; Mendes R; Vale C
    Mar Pollut Bull; 2017 Aug; 121(1-2):78-84. PubMed ID: 28554828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of monospecific banks of salt marsh vegetation on sediment bacterial communities.
    Oliveira V; Santos AL; Coelho F; Gomes NC; Silva H; Almeida A; Cunha A
    Microb Ecol; 2010 Jul; 60(1):167-79. PubMed ID: 20495797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of a salt marsh plant on trace metal bioavailability in sediments. Estimation by different chemical approaches.
    Almeida CM; Mucha AP; Vasconcelos MT
    Environ Sci Pollut Res Int; 2005 Sep; 12(5):271-7. PubMed ID: 16206720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of Sarcocornia fruticosa on retention of PAHs in salt marsh sediments (Sado estuary, Portugal).
    Martins M; Ferreira AM; Vale C
    Chemosphere; 2008 Apr; 71(8):1599-606. PubMed ID: 18068208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remediation potential of caffeine, oxybenzone, and triclosan by the salt marsh plants Spartina maritima and Halimione portulacoides.
    Couto N; Ferreira AR; Guedes P; Mateus E; Ribeiro AB
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35928-35935. PubMed ID: 30191527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals.
    Reboreda R; Caçador I
    Mar Environ Res; 2008 Feb; 65(1):77-84. PubMed ID: 17935772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.