BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33338702)

  • 1. Morphological plasticity in Chlamydomonas reinhardtii and acclimation to micropollutant stress.
    Cheloni G; Slaveykova VI
    Aquat Toxicol; 2021 Feb; 231():105711. PubMed ID: 33338702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints.
    Esperanza M; Cid Á; Herrero C; Rioboo C
    Aquat Toxicol; 2015 Aug; 165():210-21. PubMed ID: 26117094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity.
    Korkaric M; Xiao M; Behra R; Eggen RI
    Aquat Toxicol; 2015 Oct; 167():209-19. PubMed ID: 26349947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When Unity Is Strength: The Strategies Used by
    de Carpentier F; Lemaire SD; Danon A
    Cells; 2019 Oct; 8(11):. PubMed ID: 31652831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model.
    Xie M; Sun Y; Feng J; Gao Y; Zhu L
    Aquat Toxicol; 2019 May; 210():106-116. PubMed ID: 30844631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii.
    Cheloni G; Marti E; Slaveykova VI
    Aquat Toxicol; 2016 Jan; 170():120-128. PubMed ID: 26655656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules.
    Lavoie M; Le Faucheur S; Fortin C; Campbell PG
    Aquat Toxicol; 2009 Apr; 92(2):65-75. PubMed ID: 19201040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal stoichiometry in predicting Cd and Cu toxicity to a freshwater green alga Chlamydomonas reinhardtii.
    Wang WX; Dei RC
    Environ Pollut; 2006 Jul; 142(2):303-12. PubMed ID: 16310914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonistic and synergistic effects of light irradiation on the effects of copper on Chlamydomonas reinhardtii.
    Cheloni G; Cosio C; Slaveykova VI
    Aquat Toxicol; 2014 Oct; 155():275-82. PubMed ID: 25072593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of Chlamydomonas reinhardtii to cadmium stress is associated with phototaxis.
    Yu Z; Zhang T; Hao R; Zhu Y
    Environ Sci Process Impacts; 2019 Jun; 21(6):1011-1020. PubMed ID: 31120077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121.
    Samadani M; Perreault F; Oukarroum A; Dewez D
    Chemosphere; 2018 Jan; 191():174-182. PubMed ID: 29032262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palmelloid-like phenotype in the alga Raphidocelis subcapitata exposed to pollutants: A generalized adaptive strategy to stress or a specific cellular response?
    Machado MD; Soares EV
    Aquat Toxicol; 2023 Nov; 264():106732. PubMed ID: 37879199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradual plasticity alters population dynamics in variable environments: thermal acclimation in the green alga
    Kremer CT; Fey SB; Arellano AA; Vasseur DA
    Proc Biol Sci; 2018 Jan; 285(1870):. PubMed ID: 29321297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium accumulation and toxicity affect the extracytoplasmic polyphosphate level in Chlamydomonas reinhardtii.
    Samadani M; Dewez D
    Ecotoxicol Environ Saf; 2018 Dec; 166():200-206. PubMed ID: 30269015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan.
    González-Pleiter M; Rioboo C; Reguera M; Abreu I; Leganés F; Cid Á; Fernández-Piñas F
    Aquat Toxicol; 2017 May; 186():50-66. PubMed ID: 28249228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of copper and cadmium exposure on toxicity endpoints and gene expression in Chlamydomonas reinhardtii.
    Stoiber TL; Shafer MM; Armstrong DE
    Environ Toxicol Chem; 2010 Jan; 29(1):191-200. PubMed ID: 20821435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological changes in Chlamydomonas reinhardtii after 1000 generations of selection of cadmium exposure at environmentally relevant concentrations.
    Yu Z; Wei H; Hao R; Chu H; Zhu Y
    Environ Sci Process Impacts; 2018 Jun; 20(6):923-933. PubMed ID: 29725674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii.
    Jamers A; Blust R; De Coen W; Griffin JL; Jones OA
    Aquat Toxicol; 2013 Jan; 126():355-64. PubMed ID: 23063003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.
    Saison C; Perreault F; Daigle JC; Fortin C; Claverie J; Morin M; Popovic R
    Aquat Toxicol; 2010 Jan; 96(2):109-14. PubMed ID: 19883948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure.
    von Moos N; Maillard L; Slaveykova VI
    Aquat Toxicol; 2015 Apr; 161():267-75. PubMed ID: 25731685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.