BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33338773)

  • 1. Bioleaching for detoxification of waste flotation tailings: Relationship between EPS substances and bioleaching behavior.
    Ye M; Liang J; Liao X; Li L; Feng X; Qian W; Zhou S; Sun S
    J Environ Manage; 2021 Feb; 279():111795. PubMed ID: 33338773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the role of extracellular polymeric substances in the antimony leaching of tailings by Acidithiobacillus ferrooxidans.
    Song X; Yang A; Hu X; Niu AP; Cao Y; Zhang Q
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):17695-17708. PubMed ID: 36203043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dissolved oxygen on the sludge dewaterability and extracellular polymeric substances distribution by bioleaching.
    Bei Li Y; Li Song J; Jing Yao Q; Xu Chen Z; Wei Y; Long Li H; Xiao Wang M; Jing Wang B; Min Zhou J
    Chemosphere; 2021 Oct; 281():130906. PubMed ID: 34029968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching.
    Zhou J; Zheng G; Zhang X; Zhou L
    PLoS One; 2014; 9(7):e102688. PubMed ID: 25050971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species.
    Wang S; Zheng G; Zhou L
    Water Res; 2010 Oct; 44(18):5423-31. PubMed ID: 20633920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the polysaccharides and proteins production from Penicillium citrinum during bioleaching of spent coin cells.
    Naseri T; Mousavi SM
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1133-1143. PubMed ID: 35413324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation behavior of extracellular polymeric substances and its correlation with extraction efficiency of valuable metals and change of process parameters during bioleaching of spent petroleum catalyst.
    Chu H; Wang J; Tian B; Qian C; Niu T; Qi S; Yang Y; Ge Y; Dai X; Xin B
    Chemosphere; 2021 Jul; 275():130006. PubMed ID: 33639548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced metal bioleaching mechanisms of extracellular polymeric substance for obsolete LiNi
    Wang J; Cui Y; Chu H; Tian B; Li H; Zhang M; Xin B
    J Environ Manage; 2022 Sep; 318():115429. PubMed ID: 35717690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight the roles of loosely-bound and tightly-bound extracellular polymeric substances on Cu
    Lu S; Li X; Xi Y; Liu H; Zhang Z; Huang Y; Xie T; Liu Y; Quan B; Zhang C; Xu W
    J Colloid Interface Sci; 2021 Aug; 596():408-419. PubMed ID: 33852983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of different sludge concentrations on its dewaterability during bioleaching.
    Yang W; Zeng L; Zhang W; Yang Q; Wang T; Xiong H
    Water Sci Technol; 2020 Jun; 81(12):2585-2598. PubMed ID: 32857745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process.
    Ye M; Yan P; Sun S; Han D; Xiao X; Zheng L; Huang S; Chen Y; Zhuang S
    Chemosphere; 2017 Feb; 168():1115-1125. PubMed ID: 27884516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation.
    Ye M; Li G; Yan P; Ren J; Zheng L; Han D; Sun S; Huang S; Zhong Y
    Chemosphere; 2017 Oct; 185():1189-1196. PubMed ID: 28772358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial influence on storage and mobilisation of metals in iron-rich mine tailings from the Salobo mine, Brazil.
    Henne A; Craw D; Gagen EJ; Southam G
    Sci Total Environ; 2019 Aug; 680():91-104. PubMed ID: 31100671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans.
    Lee E; Han Y; Park J; Hong J; Silva RA; Kim S; Kim H
    J Environ Manage; 2015 Jan; 147():124-31. PubMed ID: 25262394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of ferrous ions on extracellular polymeric substances content and sludge dewaterability during bioleaching.
    Wong JWC; Zhou J; Kurade MB; Murugesan K
    Bioresour Technol; 2015 Mar; 179():78-83. PubMed ID: 25528607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioleaching of ultramafic tailings by acidithiobacillus spp. for CO2 sequestration.
    Power IM; Dipple GM; Southam G
    Environ Sci Technol; 2010 Jan; 44(1):456-62. PubMed ID: 19950896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific mechanism of Acidithiobacillus caldus extracellular polymeric substances in the bioleaching of copper-bearing sulfide ore.
    Feng S; Li K; Huang Z; Tong Y; Yang H
    PLoS One; 2019; 14(4):e0213945. PubMed ID: 30978195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved bioleaching efficiency of metals from waste printed circuit boards by mechanical activation.
    Gu W; Bai J; Lu L; Zhuang X; Zhao J; Yuan W; Zhang C; Wang J
    Waste Manag; 2019 Oct; 98():21-28. PubMed ID: 31421486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimization of metal sulphides bioleaching from mine wastes into the aquatic environment.
    Piervandi Z; Khodadadi Darban A; Mousavi SM; Abdollahy M; Asadollahfardi G; Funari V; Dinelli E
    Ecotoxicol Environ Saf; 2019 Oct; 182():109443. PubMed ID: 31398782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.