These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 33338846)
1. Exploring the mechanism of the potent allosteric inhibitor compound2 on SHP2 Zhou L; Feng Y; Ma YC; Zhang Z; Wu JW; Du S; Li WY; Lu XH; Ma Y; Wang RL J Mol Graph Model; 2021 Mar; 103():107807. PubMed ID: 33338846 [TBL] [Abstract][Full Text] [Related]
2. Probing the acting mode and advantages of RMC-4550 as an Src-homology 2 domain-containing protein tyrosine phosphatase (SHP2) inhibitor at molecular level through molecular docking and molecular dynamics. Wang RR; Liu WS; Zhou L; Ma Y; Wang RL J Biomol Struct Dyn; 2020 Mar; 38(5):1525-1538. PubMed ID: 31043123 [TBL] [Abstract][Full Text] [Related]
3. Exploring the cause of the dual allosteric targeted inhibition attaching to allosteric sites enhancing SHP2 inhibition. Yangchun M; WenYu Y; Liang Z; LiPeng L; JingWei W; WeiYa L; Shan D; Ying M; RunLing W Mol Divers; 2022 Jun; 26(3):1567-1580. PubMed ID: 34338914 [TBL] [Abstract][Full Text] [Related]
4. Study on the allosteric activation mechanism of SHP2 Liu L; Cheng Y; Zhang Z; Li J; Geng Y; Li Q; Luo D; Liang L; Liu W; Hu J; Ouyang W Phys Chem Chem Phys; 2023 Sep; 25(35):23588-23601. PubMed ID: 37621251 [TBL] [Abstract][Full Text] [Related]
6. Exploring the dynamic mechanism of allosteric drug SHP099 inhibiting SHP2 Du S; Lu XH; Li WY; Li LP; Ma YC; Zhou L; Wu JW; Ma Y; Wang RL Mol Divers; 2021 Aug; 25(3):1873-1887. PubMed ID: 33392964 [TBL] [Abstract][Full Text] [Related]
7. An allosteric interaction controls the activation mechanism of SHP2 tyrosine phosphatase. Anselmi M; Hub JS Sci Rep; 2020 Oct; 10(1):18530. PubMed ID: 33116231 [TBL] [Abstract][Full Text] [Related]
8. Exploring the effect of D61G mutation on SHP2 cause gain of function activity by a molecular dynamics study. Li HL; Ma Y; Zheng CJ; Jin WY; Liu WS; Wang RL J Biomol Struct Dyn; 2018 Nov; 36(14):3856-3868. PubMed ID: 29125030 [TBL] [Abstract][Full Text] [Related]
9. Structural mechanism associated with domain opening in gain-of-function mutations in SHP2 phosphatase. Darian E; Guvench O; Yu B; Qu CK; MacKerell AD Proteins; 2011 May; 79(5):1573-88. PubMed ID: 21365683 [TBL] [Abstract][Full Text] [Related]
10. A multifunctional cross-validation high-throughput screening protocol enabling the discovery of new SHP2 inhibitors. Song Y; Zhao M; Wu Y; Yu B; Liu HM Acta Pharm Sin B; 2021 Mar; 11(3):750-762. PubMed ID: 33777680 [TBL] [Abstract][Full Text] [Related]
11. Exploring the reason for increased activity of SHP2 caused by D61Y mutation through molecular dynamics. Wang RR; Ma Y; Du S; Li WY; Sun YZ; Zhou H; Wang RL Comput Biol Chem; 2019 Feb; 78():133-143. PubMed ID: 30508783 [TBL] [Abstract][Full Text] [Related]
12. Structural Determinants of Phosphopeptide Binding to the N-Terminal Src Homology 2 Domain of the SHP2 Phosphatase. Anselmi M; Calligari P; Hub JS; Tartaglia M; Bocchinfuso G; Stella L J Chem Inf Model; 2020 Jun; 60(6):3157-3171. PubMed ID: 32395997 [TBL] [Abstract][Full Text] [Related]
13. Exploring the Distinct Binding and Activation Mechanisms for Different CagA Oncoproteins and SHP2 by Molecular Dynamics Simulations. Wang Q; Zhao WC; Fu XQ; Zheng QC Molecules; 2021 Feb; 26(4):. PubMed ID: 33562680 [TBL] [Abstract][Full Text] [Related]
14. The loops of the N-SH2 binding cleft do not serve as allosteric switch in SHP2 activation. Anselmi M; Hub JS Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33888588 [TBL] [Abstract][Full Text] [Related]
15. Counteracting effects operating on Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP2) function drive selection of the recurrent Y62D and Y63C substitutions in Noonan syndrome. Martinelli S; Nardozza AP; Delle Vigne S; Sabetta G; Torreri P; Bocchinfuso G; Flex E; Venanzi S; Palleschi A; Gelb BD; Cesareni G; Stella L; Castagnoli L; Tartaglia M J Biol Chem; 2012 Aug; 287(32):27066-77. PubMed ID: 22711529 [TBL] [Abstract][Full Text] [Related]
16. Investigating the reason for loss-of-function of Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) caused by Y279C mutation through molecular dynamics simulation. Liu WS; Wang RR; Li WY; Rong M; Liu CL; Ma Y; Wang RL J Biomol Struct Dyn; 2020 Jun; 38(9):2509-2520. PubMed ID: 31258001 [TBL] [Abstract][Full Text] [Related]
17. Probing the Dynamic Mechanism of Uncommon Allosteric Inhibitors Optimized to Enhance Drug Selectivity of SHP2 with Therapeutic Potential for Cancer Treatment. Farrokhzadeh A; Akher FB; Soliman MES Appl Biochem Biotechnol; 2019 May; 188(1):260-281. PubMed ID: 30430347 [TBL] [Abstract][Full Text] [Related]
18. Discriminating between competing models for the allosteric regulation of oncogenic phosphatase SHP2 by characterizing its active state. Calligari P; Santucci V; Stella L; Bocchinfuso G Comput Struct Biotechnol J; 2021; 19():6125-6139. PubMed ID: 34900129 [TBL] [Abstract][Full Text] [Related]
19. Discovery of a novel SHP2 allosteric inhibitor using virtual screening, FMO calculation, and molecular dynamic simulation. Yuan Z; Zhang M; Chang L; Chen X; Ruan S; Shi S; Zhang Y; Zhu L; Li H; Li S J Mol Model; 2024 Apr; 30(5):131. PubMed ID: 38613643 [TBL] [Abstract][Full Text] [Related]
20. Scaffold-based selective SHP2 inhibitors design using core hopping, molecular docking, biological evaluation and molecular simulation. Li WY; Ma Y; Li HX; Lu XH; Du S; Ma YC; Zhou L; Wang RL Bioorg Chem; 2020 Dec; 105():104391. PubMed ID: 33113413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]