These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33338865)

  • 1. Sonochemical dosimetry: A comparative study of Weissler, Fricke and terephthalic acid methods.
    Rajamma DB; Anandan S; Yusof NSM; Pollet BG; Ashokkumar M
    Ultrason Sonochem; 2021 Apr; 72():105413. PubMed ID: 33338865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity.
    Ebrahiminia A; Mokhtari-Dizaji M; Toliyat T
    Ultrason Sonochem; 2013 Jan; 20(1):366-72. PubMed ID: 22766173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production.
    Merouani S; Hamdaoui O; Saoudi F; Chiha M
    J Hazard Mater; 2010 Jun; 178(1-3):1007-14. PubMed ID: 20211524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sonochemistry dosimetries in seawater.
    Khaffache R; Dehane A; Merouani S; Hamdaoui O; Ferkous H; Alrashed MM; Gasmi I; Chibani A
    Ultrason Sonochem; 2023 Dec; 101():106647. PubMed ID: 37944338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sonochemical formation of peroxynitrite in water: Impact of ultrasonic frequency and power.
    Ferkous H; Hamdaoui O; Pétrier C
    Ultrason Sonochem; 2023 Aug; 98():106488. PubMed ID: 37343396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OH-radical formation by ultrasound in aqueous solution--Part II: Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield.
    Mark G; Tauber A; Laupert R; Schuchmann HP; Schulz D; Mues A; von Sonntag C
    Ultrason Sonochem; 1998 Jun; 5(2):41-52. PubMed ID: 11270336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of gold nanoparticle size on acoustic cavitation using chemical dosimetry method.
    Shanei A; Shanei MM
    Ultrason Sonochem; 2017 Jan; 34():45-50. PubMed ID: 27773268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cathodic electrochemical detection of sonochemical radical products.
    Birkin PR; Power JF; Leighton TG; Vinçotte AM
    Anal Chem; 2002 Jun; 74(11):2584-90. PubMed ID: 12069241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of sonochemical production of hydroxyl radicals from pulsed cylindrically converging ultrasound waves.
    Wong CCY; Raymond JL; Usadi LN; Zong Z; Walton SC; Sedgwick AC; Kwan J
    Ultrason Sonochem; 2023 Oct; 99():106559. PubMed ID: 37643498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using pulsed wave ultrasound to evaluate the suitability of hydroxyl radical scavengers in sonochemical systems.
    Xiao R; Diaz-Rivera D; He Z; Weavers LK
    Ultrason Sonochem; 2013 May; 20(3):990-6. PubMed ID: 23238044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The decomposition of protoporphyrin IX by ultrasound is dependent on the generation of hydroxyl radicals.
    Xu H; Sun X; Yao J; Zhang J; Zhang Y; Chen H; Dan J; Tian Z; Tian Y
    Ultrason Sonochem; 2015 Nov; 27():623-630. PubMed ID: 25934126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for predicting the number of active bubbles in sonochemical reactors.
    Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of correlation between chemical dosimetry and subharmonic spectrum analysis to examine the acoustic cavitation.
    Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM
    Ultrason Sonochem; 2010 Jun; 17(5):863-9. PubMed ID: 20236851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of solution level on calorific and dosimetric results in a 70 kHz tower type sonochemical reactor.
    Little C; El-Sharif M; Hepher MJ
    Ultrason Sonochem; 2007 Mar; 14(3):375-9. PubMed ID: 17008117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying OH radical generation in hydrodynamic cavitation via coumarin dosimetry: Influence of operating parameters and cavitation devices.
    De-Nasri SJ; Sarvothaman VP; Nagarajan S; Manesiotis P; Robertson PKJ; Ranade VV
    Ultrason Sonochem; 2022 Nov; 90():106207. PubMed ID: 36335794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of salicylic acid dosimetry to evaluate hydrodynamic cavitation as an advanced oxidation process.
    Arrojo S; Nerín C; Benito Y
    Ultrason Sonochem; 2007 Mar; 14(3):343-9. PubMed ID: 17027314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of liquid recirculation flow on sonochemical oxidation activity in a 28 kHz sonoreactor.
    Lee D; Na I; Son Y
    Chemosphere; 2022 Jan; 286(Pt 2):131780. PubMed ID: 34358887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assay of hydroxyl radicals generated by focused ultrasound.
    Villeneuve L; Alberti L; Steghens JP; Lancelin JM; Mestas JL
    Ultrason Sonochem; 2009 Mar; 16(3):339-44. PubMed ID: 19010709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Dosimetry in the "Water Window": Ferric Ions and Hydroxyl Radicals Produced by Intense Soft X Rays.
    Vyšín L; Wachulak P; Toufarová M; Medvedev N; Voronkov RA; Bartnik A; Fiedorowicz H; Juha L
    Radiat Res; 2020 Apr; 193(4):372-382. PubMed ID: 32097100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A feasibility study of Fricke dosimetry as an absorbed dose to water standard for 192Ir HDR sources.
    deAlmeida CE; Ochoa R; Lima MC; David MG; Pires EJ; Peixoto JG; Salata C; Bernal MA
    PLoS One; 2014; 9(12):e115155. PubMed ID: 25521914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.