BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33339253)

  • 1. A Multitask-Aided Transfer Learning-Based Diagnostic Framework for Bearings under Inconsistent Working Conditions.
    Hasan MJ; Sohaib M; Kim JM
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bearing Fault Diagnosis Using Multidomain Fusion-Based Vibration Imaging and Multitask Learning.
    Hasan MJ; Islam MMM; Kim JM
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis.
    Sohaib M; Kim CH; Kim JM
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network.
    Li H; Huang J; Ji S
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Transfer Learning Framework with a One-Dimensional Deep Subdomain Adaptation Network for Bearing Fault Diagnosis under Different Working Conditions.
    Zhang R; Gu Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder.
    Shi H; Chen J; Si J; Zheng C
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent Defect Diagnosis of Rolling Element Bearings under Variable Operating Conditions Using Convolutional Neural Network and Order Maps.
    Tayyab SM; Chatterton S; Pennacchi P
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature-Level Attention-Guided Multitask CNN for Fault Diagnosis and Working Conditions Identification of Rolling Bearing.
    Wang H; Liu Z; Peng D; Yang M; Qin Y
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4757-4769. PubMed ID: 33684044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning-Based Adaptive Neural-Fuzzy Structure Scheme for Bearing Fault Pattern Recognition and Crack Size Identification.
    Piltan F; Duong BP; Kim JM
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Sound and Vibration Fusion Method for Fault Diagnosis of Rolling Bearings under Speed-Varying Conditions.
    Wan H; Gu X; Yang S; Fu Y
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems.
    Pham MT; Kim JM; Kim CH
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33276483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning.
    Xu G; Liu M; Jiang Z; Söffker D; Shen W
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fault diagnosis of rolling bearings using an Improved Multi-Scale Convolutional Neural Network with Feature Attention mechanism.
    Xu Z; Li C; Yang Y
    ISA Trans; 2021 Apr; 110():379-393. PubMed ID: 33158549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Intelligent Fault Diagnosis Method for Bearings with Variable Rotating Speed Based on Pythagorean Spatial Pyramid Pooling CNN.
    Guo S; Yang T; Gao W; Zhang C; Zhang Y
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30424001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Dual-Input Deep Anomaly Detection Method for Early Faults Warning of Rolling Bearings.
    Kang Y; Chen G; Wang H; Pan W; Wei X
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Health Condition Estimation of Bearings with Multiple Faults by a Composite Learning-Based Approach.
    Inyang U; Petrunin I; Jennions I
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34203372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bearing Fault Classification Framework Based on Image Encoding Techniques and a Convolutional Neural Network under Different Operating Conditions.
    Toma RN; Piltan F; Im K; Shon D; Yoon TH; Yoo DS; Kim JM
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet.
    Shao H; Jiang H; Wang F; Wang Y
    ISA Trans; 2017 Jul; 69():187-201. PubMed ID: 28502383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fault Diagnosis for High-Speed Train Axle-Box Bearing Using Simplified Shallow Information Fusion Convolutional Neural Network.
    Luo H; Bo L; Peng C; Hou D
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset.
    Tang H; Gao S; Wang L; Li X; Li B; Pang S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.