These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 33339388)

  • 1. Tissue Engineering of Cartilage Using a Random Positioning Machine.
    Wehland M; Steinwerth P; Aleshcheva G; Sahana J; Hemmersbach R; Lützenberg R; Kopp S; Infanger M; Grimm D
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33339388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and Molecular Changes of Human Chondrocytes Exposed to the Rotating Wall Vessel Bioreactor.
    Steinwerth P; Bertrand J; Sandt V; Marchal S; Sahana J; Bollmann M; Schulz H; Kopp S; Grimm D; Wehland M
    Biomolecules; 2023 Dec; 14(1):. PubMed ID: 38254625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redifferentiation of in vitro expanded adult articular chondrocytes by combining the hanging-drop cultivation method with hypoxic environment.
    Martinez I; Elvenes J; Olsen R; Bertheussen K; Johansen O
    Cell Transplant; 2008; 17(8):987-96. PubMed ID: 19069640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy.
    Munirah S; Samsudin OC; Aminuddin BS; Ruszymah BH
    Tissue Cell; 2010 Oct; 42(5):282-92. PubMed ID: 20810142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suitability of porcine chondrocyte micromass culture to model osteoarthritis in vitro.
    Schlichting N; Dehne T; Mans K; Endres M; Stuhlmüller B; Sittinger M; Kaps C; Ringe J
    Mol Pharm; 2014 Jul; 11(7):2092-105. PubMed ID: 24635637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in Human Foetal Osteoblasts Exposed to the Random Positioning Machine and Bone Construct Tissue Engineering.
    Mann V; Grimm D; Corydon TJ; Krüger M; Wehland M; Riwaldt S; Sahana J; Kopp S; Bauer J; Reseland JE; Infanger M; Mari Lian A; Okoro E; Sundaresan A
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30889841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions.
    Aleshcheva G; Bauer J; Hemmersbach R; Slumstrup L; Wehland M; Infanger M; Grimm D
    Basic Clin Pharmacol Toxicol; 2016 Oct; 119 Suppl 3():26-33. PubMed ID: 26826674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in morphology, gene expression and protein content in chondrocytes cultured on a random positioning machine.
    Aleshcheva G; Sahana J; Ma X; Hauslage J; Hemmersbach R; Egli M; Infanger M; Bauer J; Grimm D
    PLoS One; 2013; 8(11):e79057. PubMed ID: 24244418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neocartilage formation in 1 g, simulated, and microgravity environments: implications for tissue engineering.
    Stamenković V; Keller G; Nesic D; Cogoli A; Grogan SP
    Tissue Eng Part A; 2010 May; 16(5):1729-36. PubMed ID: 20141387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression profiling of primary human articular chondrocytes in high-density micromasses reveals patterns of recovery, maintenance, re- and dedifferentiation.
    Dehne T; Schenk R; Perka C; Morawietz L; Pruss A; Sittinger M; Kaps C; Ringe J
    Gene; 2010 Aug; 462(1-2):8-17. PubMed ID: 20433912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of the WNT-Signaling Modulators BIO and PKF118-310 on the Chondrogenic Differentiation of Human Mesenchymal Stem Cells.
    Huang X; Zhong L; Hendriks J; Post JN; Karperien M
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29438298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index.
    Branly T; Contentin R; Desancé M; Jacquel T; Bertoni L; Jacquet S; Mallein-Gerin F; Denoix JM; Audigié F; Demoor M; Galéra P
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29389887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation.
    Dehne T; Karlsson C; Ringe J; Sittinger M; Lindahl A
    Arthritis Res Ther; 2009; 11(5):R133. PubMed ID: 19723327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.
    Wang P; Zhang F; He Q; Wang J; Shiu HT; Shu Y; Tsang WP; Liang S; Zhao K; Wan C
    PLoS One; 2016; 11(2):e0148372. PubMed ID: 26841115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Chondrosphere-Based Scaffold Free Approach to Manufacture an
    Scalzone A; Wang XN; Dalgarno K; Ferreira AM; Gentile P
    Tissue Eng Part A; 2022 Jan; 28(1-2):84-93. PubMed ID: 34114497
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures.
    Isogai N; Kusuhara H; Ikada Y; Ohtani H; Jacquet R; Hillyer J; Lowder E; Landis WJ
    Tissue Eng; 2006 Apr; 12(4):691-703. PubMed ID: 16674284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model.
    Jeon JH; Yun BG; Lim MJ; Kim SJ; Lim MH; Lim JY; Park SH; Kim SW
    Tissue Eng Regen Med; 2020 Feb; 17(1):81-90. PubMed ID: 31983036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia.
    Legendre F; Ollitrault D; Hervieu M; Baugé C; Maneix L; Goux D; Chajra H; Mallein-Gerin F; Boumediene K; Galera P; Demoor M
    Tissue Eng Part C Methods; 2013 Jul; 19(7):550-67. PubMed ID: 23270543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Featured Article: In vitro development of personalized cartilage microtissues uncovers an individualized differentiation capacity of human chondrocytes.
    Martin F; Lehmann M; Sack U; Anderer U
    Exp Biol Med (Maywood); 2017 Dec; 242(18):1746-1756. PubMed ID: 28853609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.