These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33339394)

  • 1. Low-Cycle Fatigue Behavior of the Novel Steel and 30SiMn2MoV Steel at 700 °C.
    Zhao C; Zhang J; Fu J; Lian Y; Zhang Z; Zhang C; Huang J
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33339394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
    Song W; Liu X; Berto F; Razavi SMJ
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29695140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint.
    Kim Y; Hwang W
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31818031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue Behavior of the FGH96 Superalloy under High-Temperature Cyclic Loading.
    Li Z; Qin H; Xu K; Xie Z; Ji P; Jia M
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable Martensite Transformation and Strain-Controlled Fatigue Behavior of a Gradient Nanostructured Austenite Stainless Steel.
    Lei Y; Xu J; Wang Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation Damage Evolution in Low-Cycle Fatigue Life of Niobium-Stabilized Austenitic Stainless Steel.
    Choi WK; Ha S; Kim JC; Park JC; Gong A; Kim TW
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Heat Treatment Process on Microstructure and Fatigue Behavior of a Nickel-Base Superalloy.
    Zhang P; Zhu Q; Chen G; Qin H; Wang C
    Materials (Basel); 2015 Sep; 8(9):6179-6194. PubMed ID: 28793559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress-Controlled Creep-Fatigue of an Advanced Austenitic Stainless Steel at Elevated Temperatures.
    Alsmadi ZY; Abouelella H; Alomari AS; Murty KL
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Reverse-phase Transformation Annealing Process on Microstructure and Mechanical Properties of Medium Manganese Steel.
    Zhao Y; Fan L; Lu B
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LCF and HCF of Short Carbon Fibers Reinforced AE42 Mg Alloy.
    Alsaleh NA; Ataya S; Latief FH; Ahmed MMZ; Ataya A; Abdul-Latif A
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel.
    Brnic J; Turkalj G; Canadija M; Lanc D; Krscanski S; Brcic M; Li Q; Niu J
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental data from service-like creep-fatigue experiments on grade P92 steel.
    Sonntag N; Jürgens M; Uhlemann P; Skrotzki B; Olbricht J
    Data Brief; 2023 Aug; 49():109333. PubMed ID: 37409176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Energy-Based Unified Approach to Predict the Low-Cycle Fatigue Life of Type 316L Stainless Steel under Various Temperatures and Strain-Rates.
    Tak NH; Kim JS; Lim JY
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30986973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-Based Unified Models for Predicting the Fatigue Life Behaviors of Austenitic Steels and Welded Joints in Ultra-Supercritical Power Plants.
    Hwang JH; Kim DW; Lim JY; Hong SG
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low Cycle Fatigue Behavior of Plastically Pre-Strained HSLA S355MC and S460MC Steels.
    Prosgolitis CG; Kermanidis AT; Kamoutsi H; Haidemenopoulos GN
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of Fatigue Fracture Detection of Bridge Steel Structures under Cyclic Loads.
    Yang D; Yao L; Pang Q
    Comput Intell Neurosci; 2022; 2022():8534824. PubMed ID: 36148424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of LCF Behaviour on AISI316L Steel Applying the Armstrong-Frederick Kinematic Hardening Model.
    Pate SB; Dundulis G; Griskevicius P
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Damage Evolution and Life Prediction of Cross-Ply C/SiC Ceramic-Matrix Composite under Cyclic Fatigue Loading at Room Temperature and 800 °C in Air.
    Li L
    Materials (Basel); 2015 Dec; 8(12):8539-8560. PubMed ID: 28793728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Testing Conditions on Low-Cycle Fatigue Durability of Pre-Strained S420M Steel Specimens.
    Mroziński S; Piotrowski M; Egner H
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Cycle, Push-Pull Fatigue Fracture Behavior of High-C, Si-Al-Rich Nanostructured Bainite Steel.
    Zhao J; Ji H; Wang T
    Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29286325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.