These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33339394)

  • 21. Effect of Testing Conditions on Low-Cycle Fatigue Durability of Pre-Strained S420M Steel Specimens.
    Mroziński S; Piotrowski M; Egner H
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Cycle, Push-Pull Fatigue Fracture Behavior of High-C, Si-Al-Rich Nanostructured Bainite Steel.
    Zhao J; Ji H; Wang T
    Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29286325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study on the Effect of Deposited Graphene Oxide on the Fatigue Life of Austenitic Steel 1.4541 in Different Temperature Ranges.
    Nasiłowska B; Bogdanowicz Z; Bogusz P; Bombalska A; Mierczyk Z
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental and Numerical Study of Combined High and Low Cycle Fatigue Performance of Low Alloy Steel and Engineering Application.
    Tang Z; Chen Z; He Z; Hu X; Xue H; Zhuge H
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Microstructures and Fatigue Properties for Dual-Phase Pipeline Steels by Gleeble Simulation of Heat-Affected Zone.
    Zhao Z; Xu P; Cheng H; Miao J; Xiao F
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31226851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tensile Deformation Behavior of Typical Porous Laminate Structure at Different Temperatures.
    Wang P; Lian YD; Wen ZX
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33256115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Loading Methods on the Fatigue Properties of Dissimilar Al/Steel Keyhole-Free FSSW Joints.
    Zhang Z; Yu Y; Zhao H; Tong H
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32977709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Energy-Based Method for Lifetime Assessment on High-Strength-Steel Welded Joints under Different Pre-Strain Levels.
    Mi C; Huang Z; Wang H; Zhang D; Xiong T; Jian H; Tang J; Yu J
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of temperature on the cyclic fatigue resistance of thermally treated reciprocating instruments.
    Klymus ME; Alcalde MP; Vivan RR; Só MVR; de Vasconselos BC; Duarte MAH
    Clin Oral Investig; 2019 Jul; 23(7):3047-3052. PubMed ID: 30397733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reliability-Based Low Fatigue Life Analysis of Turbine Blisk with Generalized Regression Extreme Neural Network Method.
    Zhang C; Wei J; Jing H; Fei C; Tang W
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Effect of Stress Ratios on the Very High Cycle Fatigue Behavior of 9%Cr Turbine Steel at 630 °C.
    Wang Q; Chen Y; Liu Y; Wang C; Li L; He C; Gong X; Wang T; Zhang W; Wang Q; Zhang H
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32764288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Tempering Temperature on Mechanical and Rotational Bending Fatigue Properties of 40CrNi2MoE Steel.
    Yao CD; Li Y; Zang ZW; Li XY; Han S
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and Mechanical Behavior of Ultra-High Strength Low-Carbon Steel.
    Lv Z; Qian L; Liu S; Zhan L; Qin S
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A New Explanation for the Effect of Dynamic Strain Aging on Negative Strain Rate Sensitivity in Fe-30Mn-9Al-1C Steel.
    Xing J; Hou L; Du H; Liu B; Wei Y
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31635146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the origin of extraordinary cyclic strengthening of the austenitic stainless steel Sanicro 25 during fatigue at 700°C.
    Heczko M; Esser BD; Smith TM; Beran P; Mazánová V; Kruml T; Polák J; Mills MJ
    J Mater Res; 2017 Dec; 32(23):4342-4353. PubMed ID: 32499666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy Dissipated in Fatigue and Creep Conditions.
    Mroziński S; Lis Z; Egner H
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Influence of Lath, Block and Prior Austenite Grain (PAG) Size on the Tensile, Creep and Fatigue Properties of Novel Maraging Steel.
    Simm T; Sun L; McAdam S; Hill P; Rawson M; Perkins K
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study on the Elastic-Plastic Correlation of Low-Cycle Fatigue for Variable Asymmetric Loadings.
    Zhang J; Li W; Dai H; Liu N; Lin J
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32481498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low Cycle Fatigue Life Prediction Model of 800H Alloy Based on the Total Strain Energy Density Method.
    Zhang W; Jiang T; Liu L
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31877871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Testing and Analysis of Uniaxial Mechanical Fatigue, Charpy Impact Fracture Energy and Microhardness of Two Low-Carbon Steels.
    Brnic J; Balos S; Brcic M; Dramicanin M; Krscanski S; Milutinovic M; Ding B; Gao Z
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.