These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33339449)

  • 1. Efficiency of Recombinant CRISPR/rCas9-Mediated miRNA Gene Editing in Rice.
    Chung PJ; Chung H; Oh N; Choi J; Bang SW; Jung SE; Jung H; Shim JS; Kim JK
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33339449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas technology based genome editing for modification of salinity stress tolerance responses in rice (Oryza sativa L.).
    Khan I; Khan S; Zhang Y; Zhou J; Akhoundian M; Jan SA
    Mol Biol Rep; 2021 Apr; 48(4):3605-3615. PubMed ID: 33950408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise Editing of the
    Usman B; Nawaz G; Zhao N; Liao S; Liu Y; Li R
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33113937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas9 Based Genome Editing Reveals New Insights into MicroRNA Function and Regulation in Rice.
    Zhou J; Deng K; Cheng Y; Zhong Z; Tian L; Tang X; Tang A; Zheng X; Zhang T; Qi Y; Zhang Y
    Front Plant Sci; 2017; 8():1598. PubMed ID: 28955376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Base editing in rice: current progress, advances, limitations, and future perspectives.
    Yarra R; Sahoo L
    Plant Cell Rep; 2021 Apr; 40(4):595-604. PubMed ID: 33423074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-mediated accelerated domestication of African rice landraces.
    Lacchini E; Kiegle E; Castellani M; Adam H; Jouannic S; Gregis V; Kater MM
    PLoS One; 2020; 15(3):e0229782. PubMed ID: 32126126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-Based Genome Editing Using Rice Zygotes.
    Toda E; Okamoto T
    Curr Protoc Plant Biol; 2020 Jun; 5(2):e20111. PubMed ID: 32515907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes.
    Minkenberg B; Xie K; Yang Y
    Plant J; 2017 Feb; 89(3):636-648. PubMed ID: 27747971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9.
    Dong OX; Yu S; Jain R; Zhang N; Duong PQ; Butler C; Li Y; Lipzen A; Martin JA; Barry KW; Schmutz J; Tian L; Ronald PC
    Nat Commun; 2020 Mar; 11(1):1178. PubMed ID: 32132530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing.
    Li X; Zhou W; Ren Y; Tian X; Lv T; Wang Z; Fang J; Chu C; Yang J; Bu Q
    J Genet Genomics; 2017 Mar; 44(3):175-178. PubMed ID: 28291639
    [No Abstract]   [Full Text] [Related]  

  • 13. Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice.
    Chung PJ; Jung H; Jeong DH; Ha SH; Choi YD; Kim JK
    BMC Genomics; 2016 Aug; 17():563. PubMed ID: 27501838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of miRNA sequences by TALENs and CRISPR/Cas9 induces varied lengths of miRNA production.
    Bi H; Fei Q; Li R; Liu B; Xia R; Char SN; Meyers BC; Yang B
    Plant Biotechnol J; 2020 Jul; 18(7):1526-1536. PubMed ID: 31821678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system.
    Xu RF; Li H; Qin RY; Li J; Qiu CH; Yang YC; Ma H; Li L; Wei PC; Yang JB
    Sci Rep; 2015 Jun; 5():11491. PubMed ID: 26089199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing.
    Ashokkumar S; Jaganathan D; Ramanathan V; Rahman H; Palaniswamy R; Kambale R; Muthurajan R
    PLoS One; 2020; 15(8):e0237018. PubMed ID: 32785241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal responses of conserved miRNAs to drought and their associations with drought tolerance and productivity in rice.
    Xia H; Yu S; Kong D; Xiong J; Ma X; Chen L; Luo L
    BMC Genomics; 2020 Mar; 21(1):232. PubMed ID: 32171232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.