These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33339836)

  • 1. Application of feed forward and recurrent neural networks in simulation of left ventricular mechanics.
    Dabiri Y; Van der Velden A; Sack KL; Choy JS; Guccione JM; Kassab GS
    Sci Rep; 2020 Dec; 10(1):22298. PubMed ID: 33339836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Left Ventricular Mechanics Using Machine Learning.
    Dabiri Y; Van der Velden A; Sack KL; Choy JS; Kassab GS; Guccione JM
    Front Phys; 2019 Sep; 7():. PubMed ID: 31903394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite element model of myocardial infarction using a composite material approach.
    Haddad SMH; Samani A
    Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):33-46. PubMed ID: 29252005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MRI-based finite-element analysis of left ventricular aneurysm.
    Walker JC; Ratcliffe MB; Zhang P; Wallace AW; Fata B; Hsu EW; Saloner D; Guccione JM
    Am J Physiol Heart Circ Physiol; 2005 Aug; 289(2):H692-700. PubMed ID: 15778283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive ventricular mechanics modelling using MRI of structure and function.
    Wang VY; Lam HI; Ennis DB; Young AA; Nash MP
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):814-21. PubMed ID: 18982680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of wall stresses and mechanical heart power in the left ventricle: Finite element modeling versus Laplace analysis.
    Gsell MAF; Augustin CM; Prassl AJ; Karabelas E; Fernandes JF; Kelm M; Goubergrits L; Kuehne T; Plank G
    Int J Numer Method Biomed Eng; 2018 Dec; 34(12):e3147. PubMed ID: 30151998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of a left ventricle finite element model defining infarction into the XCAT imaging phantom.
    Veress AI; Segars WP; Tsui BM; Gullberg GT
    IEEE Trans Med Imaging; 2011 Apr; 30(4):915-27. PubMed ID: 21041157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational modelling of left-ventricular diastolic mechanics: effect of fibre orientation and right-ventricle topology.
    Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    J Biomech; 2015 Feb; 48(4):604-612. PubMed ID: 25596634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infarcted Left Ventricles Have Stiffer Material Properties and Lower Stiffness Variation: Three-Dimensional Echo-Based Modeling to Quantify In Vivo Ventricle Material Properties.
    Fan L; Yao J; Yang C; Tang D; Xu D
    J Biomech Eng; 2015 Aug; 137(8):081005. PubMed ID: 25994130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of Left Ventricular Dynamics Using a Low-Order Mathematical Model.
    Moulton MJ; Hong BD; Secomb TW
    Cardiovasc Eng Technol; 2017 Dec; 8(4):480-494. PubMed ID: 28812230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure-based finite element model of left ventricle passive inflation.
    Xi C; Kassab GS; Lee LC
    Acta Biomater; 2019 May; 90():241-253. PubMed ID: 30980939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite state machine implementation for left ventricle modeling and control.
    King JM; Bergeron CA; Taylor CE
    Biomed Eng Online; 2019 Jan; 18(1):10. PubMed ID: 30700298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-specific finite element-based analysis of ventricular myofiber stress after Coapsys: importance of residual stress.
    Carrick R; Ge L; Lee LC; Zhang Z; Mishra R; Axel L; Guccione JM; Grossi EA; Ratcliffe MB
    Ann Thorac Surg; 2012 Jun; 93(6):1964-71. PubMed ID: 22560323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading.
    Gao H; Wang H; Berry C; Luo X; Griffith BE
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1199-222. PubMed ID: 24799090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-specific finite element modeling of the Cardiokinetix Parachute(®) device: effects on left ventricular wall stress and function.
    Lee LC; Ge L; Zhang Z; Pease M; Nikolic SD; Mishra R; Ratcliffe MB; Guccione JM
    Med Biol Eng Comput; 2014 Jun; 52(6):557-66. PubMed ID: 24793158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrotic infarction on the LV free wall may alter the mechanics of healthy septal wall during passive filling.
    Nemavhola F
    Biomed Mater Eng; 2017; 28(6):579-599. PubMed ID: 29171965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residual Stress Impairs Pump Function After Surgical Ventricular Remodeling: A Finite Element Analysis.
    Pantoja JL; Zhang Z; Tartibi M; Sun K; Macmillan W; Guccione JM; Ge L; Ratcliffe MB
    Ann Thorac Surg; 2015 Dec; 100(6):2198-205. PubMed ID: 26341601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pulmonary regurgitation on cardiac functions based on a human bi-ventricle model.
    Yin X; Wang Y
    Comput Methods Programs Biomed; 2023 Aug; 238():107600. PubMed ID: 37285726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.