BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 33339840)

  • 1. Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions.
    Pinheiro T; Lip KYF; García-Ríos E; Querol A; Teixeira J; van Gulik W; Guillamón JM; Domingues L
    Sci Rep; 2020 Dec; 10(1):22329. PubMed ID: 33339840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae.
    García-Ríos E; Alonso-Del-Real J; Lip KYF; Pinheiro T; Teixeira J; van Gulik W; Domingues L; Querol A; Guillamón JM
    Genomics; 2022 Jul; 114(4):110386. PubMed ID: 35569731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae.
    Pizarro FJ; Jewett MC; Nielsen J; Agosin E
    Appl Environ Microbiol; 2008 Oct; 74(20):6358-68. PubMed ID: 18723660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct Proteome Remodeling of Industrial Saccharomyces cerevisiae in Response to Prolonged Thermal Stress or Transient Heat Shock.
    Xiao W; Duan X; Lin Y; Cao Q; Li S; Guo Y; Gan Y; Qi X; Zhou Y; Guo L; Qin P; Wang Q; Shui W
    J Proteome Res; 2018 May; 17(5):1812-1825. PubMed ID: 29611422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis to identify genes in wine yeast adaptation to low-temperature fermentation.
    Salvadó Z; Chiva R; Rozès N; Cordero-Otero R; Guillamón JM
    J Appl Microbiol; 2012 Jul; 113(1):76-88. PubMed ID: 22507142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation.
    García-Ríos E; Querol A; Guillamón JM
    J Proteomics; 2016 Sep; 146():70-9. PubMed ID: 27343759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.
    Zuzuarregui A; Monteoliva L; Gil C; del Olmo Ml
    Appl Environ Microbiol; 2006 Jan; 72(1):836-47. PubMed ID: 16391125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proteome of a wine yeast strain during fermentation, correlation with the transcriptome.
    Rossignol T; Kobi D; Jacquet-Gutfreund L; Blondin B
    J Appl Microbiol; 2009 Jul; 107(1):47-55. PubMed ID: 19245406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the Mechanism of Thermotolerance Distinct From Heat Shock Response Through Proteomic Analysis of Industrial Strains of Saccharomyces cerevisiae.
    Shui W; Xiong Y; Xiao W; Qi X; Zhang Y; Lin Y; Guo Y; Zhang Z; Wang Q; Ma Y
    Mol Cell Proteomics; 2015 Jul; 14(7):1885-97. PubMed ID: 25926660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae.
    Salvadó Z; Ramos-Alonso L; Tronchoni J; Penacho V; García-Ríos E; Morales P; Gonzalez R; Guillamón JM
    Int J Food Microbiol; 2016 Nov; 236():38-46. PubMed ID: 27442849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stuck at work? Quantitative proteomics of environmental wine yeast strains reveals the natural mechanism of overcoming stuck fermentation.
    Szopinska A; Christ E; Planchon S; König H; Evers D; Renaut J
    Proteomics; 2016 Feb; 16(4):593-608. PubMed ID: 26763469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfome analysis of a wild-type wine Saccharomyces cerevisiae strain.
    Braconi D; Amato L; Bernardini G; Arena S; Orlandini M; Scaloni A; Santucci A
    Food Microbiol; 2011 Sep; 28(6):1220-30. PubMed ID: 21645823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of Yeast Adaptation to Wine Fermentations.
    García-Ríos E; Guillamón JM
    Prog Mol Subcell Biol; 2019; 58():37-59. PubMed ID: 30911888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.
    Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive response to wine selective pressures shapes the genome of a
    Lairón-Peris M; Castiglioni GL; Routledge SJ; Alonso-Del-Real J; Linney JA; Pitt AR; Melcr J; Goddard AD; Barrio E; Querol A
    Microb Genom; 2021 Aug; 7(8):. PubMed ID: 34448691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol.
    Kolkman A; Olsthoorn MM; Heeremans CE; Heck AJ; Slijper M
    Mol Cell Proteomics; 2005 Jan; 4(1):1-11. PubMed ID: 15502163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of CO
    Porras-Agüera JA; Moreno-García J; García-Martínez T; Moreno J; Mauricio JC
    Int J Food Microbiol; 2021 Jun; 348():109226. PubMed ID: 33964807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic characterization of a wild-type wine strain of Saccharomyces cerevisiae.
    Trabalzini L; Paffetti A; Ferro E; Scaloni A; Talamo F; Millucci L; Martelli P; Santucci A
    Ital J Biochem; 2003 Dec; 52(4):145-53. PubMed ID: 15141481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.
    Chen S; Xu Y
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1940-54. PubMed ID: 24879599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein synthesis of Btn2 under pronounced translation repression during the process of alcoholic fermentation and wine-making in yeast.
    Kato S; Yamauchi Y; Izawa S
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9669-9677. PubMed ID: 30141081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.