These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33339859)

  • 1. Perceptual uncertainty and action consequences independently affect hand movements in a virtual environment.
    Giesel M; Nowakowska A; Harris JM; Hesse C
    Sci Rep; 2020 Dec; 10(1):22307. PubMed ID: 33339859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Virtual Reality to Transfer Motor Skill Knowledge from One Hand to Another.
    Ossmy O; Mukamel R
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotor skill acquisition in virtual reality shows sustained transfer to the real world.
    Kim A; Schweighofer N; Finley JM
    J Neuroeng Rehabil; 2019 Sep; 16(1):113. PubMed ID: 31521167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer of motor skill between virtual reality viewed using a head-mounted display and conventional screen environments.
    Juliano JM; Liew SL
    J Neuroeng Rehabil; 2020 Apr; 17(1):48. PubMed ID: 32276664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Trade-Off of Virtual Reality Training for Dart Throwing: A Facilitation of Perceptual-Motor Learning With a Detriment to Performance.
    Drew SA; Awad MF; Armendariz JA; Gabay B; Lachica IJ; Hinkel-Lipsker JW
    Front Sports Act Living; 2020; 2():59. PubMed ID: 33345050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual reality as a representative training environment for football referees.
    van Biemen T; Müller D; Mann DL
    Hum Mov Sci; 2023 Jun; 89():103091. PubMed ID: 37084551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Movement kinematic and postural control differences when performing a visuomotor skill in real and virtual environments.
    Brock K; Vine SJ; Ross JM; Trevarthen M; Harris DJ
    Exp Brain Res; 2023 Jul; 241(7):1797-1810. PubMed ID: 37222777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examining the representativeness of a virtual reality environment for simulation of tennis performance.
    Le Noury P; Buszard T; Reid M; Farrow D
    J Sports Sci; 2021 Feb; 39(4):412-420. PubMed ID: 32951536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtually the same? How impaired sensory information in virtual reality may disrupt vision for action.
    Harris DJ; Buckingham G; Wilson MR; Vine SJ
    Exp Brain Res; 2019 Nov; 237(11):2761-2766. PubMed ID: 31485708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid assessment of hand reaching using virtual reality and application in cerebellar stroke.
    Isenstein EL; Waz T; LoPrete A; Hernandez Y; Knight EJ; Busza A; Tadin D
    PLoS One; 2022; 17(9):e0275220. PubMed ID: 36174027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.
    Gaffary Y; Le Gouis B; Marchal M; Argelaguet F; Arnaldi B; Lecuyer A
    IEEE Trans Vis Comput Graph; 2017 Nov; 23(11):2372-2377. PubMed ID: 28809699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual reality as a tool for balance research: Eyes open body sway is reproduced in photo-realistic, but not in abstract virtual scenes.
    Assländer L; Streuber S
    PLoS One; 2020; 15(10):e0241479. PubMed ID: 33119679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AR in VR: assessing surgical augmented reality visualizations in a steerable virtual reality environment.
    Hettig J; Engelhardt S; Hansen C; Mistelbauer G
    Int J Comput Assist Radiol Surg; 2018 Nov; 13(11):1717-1725. PubMed ID: 30043197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning and transfer of complex motor skills in virtual reality: a perspective review.
    Levac DE; Huber ME; Sternad D
    J Neuroeng Rehabil; 2019 Oct; 16(1):121. PubMed ID: 31627755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of hand movement velocity on cognitive conflict processing in a 3D object selection task in virtual reality.
    Singh AK; Gramann K; Chen HT; Lin CT
    Neuroimage; 2021 Feb; 226():117578. PubMed ID: 33221452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor performance of individuals with cerebral palsy in a virtual game using a mobile phone.
    de Paula JN; de Mello Monteiro CB; da Silva TD; Capelini CM; de Menezes LDC; Massetti T; Tonks J; Watson S; Nicolai Ré AH
    Disabil Rehabil Assist Technol; 2018 Aug; 13(6):609-613. PubMed ID: 29092683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited transfer and retention of locomotor adaptations from virtual reality obstacle avoidance to the physical world.
    Weber A; Hartmann U; Werth J; Epro G; Seeley J; Nickel P; Karamanidis K
    Sci Rep; 2022 Nov; 12(1):19655. PubMed ID: 36385632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor learning from virtual reality to natural environments in individuals with Duchenne muscular dystrophy.
    Quadrado VH; Silva TDD; Favero FM; Tonks J; Massetti T; Monteiro CBM
    Disabil Rehabil Assist Technol; 2019 Jan; 14(1):12-20. PubMed ID: 29124971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor circumvention strategies in response to static pedestrians in a virtual and physical environment.
    Bühler MA; Lamontagne A
    Gait Posture; 2019 Feb; 68():201-206. PubMed ID: 30500732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short Term Motor-Skill Acquisition Improves with Size of Self-Controlled Virtual Hands.
    Ossmy O; Mukamel R
    PLoS One; 2017; 12(1):e0168520. PubMed ID: 28056023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.