These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 33340354)
21. Preparation of hydroxy-PAAm hydrogels for decoupling the effects of mechanotransduction cues. Grevesse T; Versaevel M; Gabriele S J Vis Exp; 2014 Aug; (90):. PubMed ID: 25225964 [TBL] [Abstract][Full Text] [Related]
22. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Goldfracht I; Efraim Y; Shinnawi R; Kovalev E; Huber I; Gepstein A; Arbel G; Shaheen N; Tiburcy M; Zimmermann WH; Machluf M; Gepstein L Acta Biomater; 2019 Jul; 92():145-159. PubMed ID: 31075518 [TBL] [Abstract][Full Text] [Related]
23. Patterning on Topography for Generation of Cell Culture Substrates with Independent Nanoscale Control of Chemical and Topographical Extracellular Matrix Cues. Sevcik EN; Szymanski JM; Jallerat Q; Feinberg AW Curr Protoc Cell Biol; 2017 Jun; 75():10.23.1-10.23.25. PubMed ID: 28627752 [TBL] [Abstract][Full Text] [Related]
24. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Eitan Y; Sarig U; Dahan N; Machluf M Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649 [TBL] [Abstract][Full Text] [Related]
25. Toward a Microencapsulated 3D hiPSC-Derived Abecasis B; Canhão PGM; Almeida HV; Calmeiro T; Fortunato E; Gomes-Alves P; Serra M; Alves PM Front Bioeng Biotechnol; 2020; 8():580744. PubMed ID: 33224931 [TBL] [Abstract][Full Text] [Related]
26. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts. Kim TY; Kofron CM; King ME; Markes AR; Okundaye AO; Qu Z; Mende U; Choi BR PLoS One; 2018; 13(5):e0196714. PubMed ID: 29715271 [TBL] [Abstract][Full Text] [Related]
28. Harnessing cellular-derived forces in self-assembled microtissues to control the synthesis and alignment of ECM. Schell JY; Wilks BT; Patel M; Franck C; Chalivendra V; Cao X; Shenoy VB; Morgan JR Biomaterials; 2016 Jan; 77():120-9. PubMed ID: 26610075 [TBL] [Abstract][Full Text] [Related]
29. Mitochondrial architecture in cardiac myocytes depends on cell shape and matrix rigidity. Lyra-Leite DM; Petersen AP; Ariyasinghe NR; Cho N; McCain ML J Mol Cell Cardiol; 2021 Jan; 150():32-43. PubMed ID: 33038389 [TBL] [Abstract][Full Text] [Related]
30. Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells. Choi MY; Kim JT; Lee WJ; Lee Y; Park KM; Yang YI; Park KD Acta Biomater; 2017 Mar; 50():234-248. PubMed ID: 28063988 [TBL] [Abstract][Full Text] [Related]
31. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. LaNasa SM; Bryant SJ Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460 [TBL] [Abstract][Full Text] [Related]
32. Decellularized muscle-derived hydrogels support in vitro cardiac microtissue fabrication. Rajabi S; Aghdami N; Varzideh F; Parchehbaf-Kashani M; Nobakht Lahrood F J Biomed Mater Res B Appl Biomater; 2020 Nov; 108(8):3302-3310. PubMed ID: 32524765 [TBL] [Abstract][Full Text] [Related]
33. Poly(N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering. Chen YS; Tsou PC; Lo JM; Tsai HC; Wang YZ; Hsiue GH Biomaterials; 2013 Oct; 34(30):7328-34. PubMed ID: 23827188 [TBL] [Abstract][Full Text] [Related]
34. Microfabrication of a platform to measure and manipulate the mechanics of engineered microtissues. Ramade A; Legant WR; Picart C; Chen CS; Boudou T Methods Cell Biol; 2014; 121():191-211. PubMed ID: 24560511 [TBL] [Abstract][Full Text] [Related]
35. Cell patterning: interaction of cardiac myocytes and fibroblasts in three-dimensional culture. Baudino TA; McFadden A; Fix C; Hastings J; Price R; Borg TK Microsc Microanal; 2008 Apr; 14(2):117-25. PubMed ID: 18312716 [TBL] [Abstract][Full Text] [Related]
36. The Effect of Substrate Stiffness on Cardiomyocyte Action Potentials. Boothe SD; Myers JD; Pok S; Sun J; Xi Y; Nieto RM; Cheng J; Jacot JG Cell Biochem Biophys; 2016 Dec; 74(4):527-535. PubMed ID: 27722948 [TBL] [Abstract][Full Text] [Related]
37. Tailoring the dependency between rigidity and water uptake of a microfabricated hydrogel with the conformational rigidity of a polymer cross-linker. Schmidt JJ; Jeong JH; Chan V; Cha C; Baek K; Lai MH; Bashir R; Kong H Biomacromolecules; 2013 May; 14(5):1361-9. PubMed ID: 23517437 [TBL] [Abstract][Full Text] [Related]
38. Influence of substrate stiffness on the phenotype of heart cells. Bhana B; Iyer RK; Chen WL; Zhao R; Sider KL; Likhitpanichkul M; Simmons CA; Radisic M Biotechnol Bioeng; 2010 Apr; 105(6):1148-60. PubMed ID: 20014437 [TBL] [Abstract][Full Text] [Related]