These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33340690)

  • 1. Using Interactome Big Data to Crack Genetic Mysteries and Enhance Future Crop Breeding.
    Wu L; Han L; Li Q; Wang G; Zhang H; Li L
    Mol Plant; 2021 Jan; 14(1):77-94. PubMed ID: 33340690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data.
    Tong H; Nikoloski Z
    J Plant Physiol; 2021 Feb; 257():153354. PubMed ID: 33385619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives.
    Yang W; Feng H; Zhang X; Zhang J; Doonan JH; Batchelor WD; Xiong L; Yan J
    Mol Plant; 2020 Feb; 13(2):187-214. PubMed ID: 31981735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational genomics and multi-omics integrated approaches as a useful strategy for crop breeding.
    Choi HK
    Genes Genomics; 2019 Feb; 41(2):133-146. PubMed ID: 30353370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating multi-omics data for crop improvement.
    Scossa F; Alseekh S; Fernie AR
    J Plant Physiol; 2021 Feb; 257():153352. PubMed ID: 33360148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic resources in plant breeding for sustainable agriculture.
    Thudi M; Palakurthi R; Schnable JC; Chitikineni A; Dreisigacker S; Mace E; Srivastava RK; Satyavathi CT; Odeny D; Tiwari VK; Lam HM; Hong YB; Singh VK; Li G; Xu Y; Chen X; Kaila S; Nguyen H; Sivasankar S; Jackson SA; Close TJ; Shubo W; Varshney RK
    J Plant Physiol; 2021 Feb; 257():153351. PubMed ID: 33412425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning-Assisted Approaches in Modernized Plant Breeding Programs.
    Yoosefzadeh Najafabadi M; Hesami M; Eskandari M
    Genes (Basel); 2023 Mar; 14(4):. PubMed ID: 37107535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction.
    Xu Y; Zhang X; Li H; Zheng H; Zhang J; Olsen MS; Varshney RK; Prasanna BM; Qian Q
    Mol Plant; 2022 Nov; 15(11):1664-1695. PubMed ID: 36081348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding.
    Varshney RK; Terauchi R; McCouch SR
    PLoS Biol; 2014 Jun; 12(6):e1001883. PubMed ID: 24914810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding.
    Khan MHU; Wang S; Wang J; Ahmar S; Saeed S; Khan SU; Xu X; Chen H; Bhat JA; Feng X
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational genomics for plant breeding with the genome sequence explosion.
    Kang YJ; Lee T; Lee J; Shim S; Jeong H; Satyawan D; Kim MY; Lee SH
    Plant Biotechnol J; 2016 Apr; 14(4):1057-69. PubMed ID: 26269219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding.
    Mascher M; Schreiber M; Scholz U; Graner A; Reif JC; Stein N
    Nat Genet; 2019 Jul; 51(7):1076-1081. PubMed ID: 31253974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparation and utilization of crop-omics databases].
    Song J; Wu YB; Zhou YH; Liu BJ; Wang N; Hao ZF; Wu YQ
    Yi Chuan; 2018 Jul; 40(7):534-545. PubMed ID: 30021717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vegetable biology and breeding in the genomics era.
    Li H; Yang X; Shang Y; Zhang Z; Huang S
    Sci China Life Sci; 2023 Feb; 66(2):226-250. PubMed ID: 36508122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomics-based strategies for the use of natural variation in the improvement of crop metabolism.
    Scossa F; Brotman Y; de Abreu E Lima F; Willmitzer L; Nikoloski Z; Tohge T; Fernie AR
    Plant Sci; 2016 Jan; 242():47-64. PubMed ID: 26566824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Markers for Precision Plant Breeding.
    Salgotra RK; Stewart CN
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32640763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic approaches to crop breeding: current status and perspectives.
    Dalakouras A; Vlachostergios D
    J Exp Bot; 2021 Jul; 72(15):5356-5371. PubMed ID: 34017985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GpemDB: A Scalable Database Architecture with the Multi-omics Entity-relationship Model to Integrate Heterogeneous Big-data for Precise Crop Breeding.
    Gong L; Lou Q; Yu C; Chen Y; Hong J; Wu W; Fan S; Chen L; Liu C
    Front Biosci (Landmark Ed); 2022 May; 27(5):159. PubMed ID: 35638426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.