These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 33340777)
1. Ex-vivo biomechanical testing of pig femur diaphysis B type fracture fixed by novel biodegradable bone glue. Krtička M; Michlovská L; Nekuda V; Poláček P; Valová K; Žídek J; Kaiser J; Zikmund T; Vojtová L J Mech Behav Biomed Mater; 2021 Mar; 115():104249. PubMed ID: 33340777 [TBL] [Abstract][Full Text] [Related]
2. An in vitro biomechanical comparison of interlocking nail constructs and double plating for fixation of diaphyseal femur fractures in immature horses. Radcliffe RM; Lopez MJ; Turner TA; Watkins JP; Radcliffe CH; Markel MD Vet Surg; 2001; 30(2):179-90. PubMed ID: 11230773 [TBL] [Abstract][Full Text] [Related]
3. A new adhesive technique for internal fixation in midfacial surgery. Endres K; Marx R; Tinschert J; Wirtz DC; Stoll C; Riediger D; Smeets R Biomed Eng Online; 2008 May; 7():16. PubMed ID: 18489785 [TBL] [Abstract][Full Text] [Related]
4. Interlocked Pins Increase Strength by a Lateral Spread of Load in Femoral Neck Fixation: a Cadaver Study. Brattgjerd JE; Niratisairak S; Steen H; Strømsøe K Acta Chir Orthop Traumatol Cech; 2021; 88(2):144-152. PubMed ID: 33960928 [TBL] [Abstract][Full Text] [Related]
5. Effects of nail rigidity on fracture healing. Strength and mineralisation in rat femoral bone. Utvåg SE; Reikerås O Arch Orthop Trauma Surg; 1998; 118(1-2):7-13. PubMed ID: 9833097 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical evaluation of dual-energy X-ray absorptiometry for predicting fracture loads of the infant femur for injury investigation: an in vitro porcine model. Pierce MC; Valdevit A; Anderson L; Inoue N; Hauser DL J Orthop Trauma; 2000 Nov; 14(8):571-6. PubMed ID: 11149504 [TBL] [Abstract][Full Text] [Related]
7. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Lin FH; Chen TM; Lin CP; Lee CJ Artif Organs; 1999 Feb; 23(2):186-94. PubMed ID: 10027889 [TBL] [Abstract][Full Text] [Related]
8. The biomechanical properties of the feline femur. Gibson TW; Moens NM; Runciman RJ; Holmberg DL; Monteith GM Vet Comp Orthop Traumatol; 2008; 21(4):312-7. PubMed ID: 18704236 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate. Bagheri ZS; Tavakkoli Avval P; Bougherara H; Aziz MS; Schemitsch EH; Zdero R J Biomech Eng; 2014 Sep; 136(9):091002. PubMed ID: 24828985 [TBL] [Abstract][Full Text] [Related]
10. Micro-computed tomography assessment of the progression of fracture healing in mice. O'Neill KR; Stutz CM; Mignemi NA; Burns MC; Murry MR; Nyman JS; Schoenecker JG Bone; 2012 Jun; 50(6):1357-67. PubMed ID: 22453081 [TBL] [Abstract][Full Text] [Related]
11. A new bone adhesive candidate- does it work in human bone? An ex-vivo preclinical evaluation in fresh human osteoporotic femoral head bone. Bojan AJ; Stadelmann VA; Wu D; Pujari-Palmer M; Insley G; Sundh D; Persson C; Engqvist H; Procter P Injury; 2022 Jun; 53(6):1858-1866. PubMed ID: 35469636 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical and biological aspects of defect treatment in fractures using helical plates. Perren SM; Regazzoni P; Fernandez AA Acta Chir Orthop Traumatol Cech; 2014; 81(4):267-71. PubMed ID: 25137496 [TBL] [Abstract][Full Text] [Related]
13. External Beam Irradiation Preferentially Inhibits the Endochondral Pathway of Fracture Healing: A Rat Model. Wu Y; Hanna EL; Holmes RE; Lin Z; Chiaramonti AM; Reeves RA; McDonald DG; Vanek KN; Barfield WR; Yao H; Pellegrini VD Clin Orthop Relat Res; 2018 Oct; 476(10):2076-2090. PubMed ID: 30024459 [TBL] [Abstract][Full Text] [Related]
14. Do Transcortical Screws in a Locking Plate Construct Improve the Stiffness in the Fixation of Vancouver B1 Periprosthetic Femur Fractures? A Biomechanical Analysis of 2 Different Plating Constructs. Lochab J; Carrothers A; Wong E; McLachlin S; Aldebeyan W; Jenkinson R; Whyne C; Nousiainen MT J Orthop Trauma; 2017 Jan; 31(1):15-20. PubMed ID: 28002219 [TBL] [Abstract][Full Text] [Related]
15. A biomechanical comparison of three fixation techniques in osteoporotic reverse oblique intertrochanteric femur fracture with fragmented lateral cortex. Polat G; Akgül T; Ekinci M; Bayram S Eur J Trauma Emerg Surg; 2019 Jun; 45(3):499-505. PubMed ID: 30600335 [TBL] [Abstract][Full Text] [Related]
17. Dual Bone Fixation: A Biomechanical Comparison of 3 Implant Constructs in a Mid-Diaphyseal Fracture Model of the Feline Radius and Ulna. Preston TJ; Glyde M; Hosgood G; Day RE Vet Surg; 2016 Apr; 45(3):289-94. PubMed ID: 27007749 [TBL] [Abstract][Full Text] [Related]
18. Effectiveness of non-uniform thickness on a locking compression plate used as a biodegradable bone implant plate. Singh G; Pandey A; Chandra G J Biomater Appl; 2022 Sep; 37(3):429-446. PubMed ID: 35473434 [TBL] [Abstract][Full Text] [Related]
19. [Biomechanical comparative study on proximal femoral locking plate and Gamma3 for treatment of stable intertrochanteric fracture]. Jiang W; Liu Y; Yang L; Xu W; Liu S; Zhang D; Chen X; Wang H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Sep; 28(9):1096-9. PubMed ID: 25509773 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical analysis comparing titanium elastic nails with locked plating in two simulated pediatric femur fracture models. Porter SE; Booker GR; Parsell DE; Weber MD; Russell GV; Woodall J; Wagner M; Neubauer T J Pediatr Orthop; 2012 Sep; 32(6):587-93. PubMed ID: 22892620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]