BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 33341494)

  • 1. DeepTarget: Gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy.
    Jin D; Guo D; Ho TY; Harrison AP; Xiao J; Tseng CK; Lu L
    Med Image Anal; 2021 Feb; 68():101909. PubMed ID: 33341494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transformer-guided cross-modality adaptive feature fusion framework for esophageal gross tumor volume segmentation.
    Yue Y; Li N; Zhang G; Xing W; Zhu Z; Liu X; Song S; Ta D
    Comput Methods Programs Biomed; 2024 Jun; 251():108216. PubMed ID: 38761412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network.
    Guo Z; Guo N; Gong K; Zhong S; Li Q
    Phys Med Biol; 2019 Oct; 64(20):205015. PubMed ID: 31514173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer: reduction in geographic misses with equal inter-observer variability: PET/CT improves esophageal target definition.
    Schreurs LM; Busz DM; Paardekooper GM; Beukema JC; Jager PL; Van der Jagt EJ; van Dam GM; Groen H; Plukker JT; Langendijk JA
    Dis Esophagus; 2010 Aug; 23(6):493-501. PubMed ID: 20113320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning.
    Rundo L; Stefano A; Militello C; Russo G; Sabini MG; D'Arrigo C; Marletta F; Ippolito M; Mauri G; Vitabile S; Gilardi MC
    Comput Methods Programs Biomed; 2017 Jun; 144():77-96. PubMed ID: 28495008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [F18] FDG-PET/CT for manual or semiautomated GTV delineation of the primary tumor for radiation therapy planning in patients with esophageal cancer: is it useful?
    Walter F; Jell C; Zollner B; Andrae C; Gerum S; Ilhan H; Belka C; Niyazi M; Roeder F
    Strahlenther Onkol; 2021 Sep; 197(9):780-790. PubMed ID: 33104815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic segmentation of esophageal gross tumor volume in
    Yue Y; Li N; Zhang G; Zhu Z; Liu X; Song S; Ta D
    Comput Methods Programs Biomed; 2023 Feb; 229():107266. PubMed ID: 36470035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards deep-learning (DL) based fully automated target delineation for rectal cancer neoadjuvant radiotherapy using a divide-and-conquer strategy: a study with multicenter blind and randomized validation.
    Geng J; Zhu X; Liu Z; Chen Q; Bai L; Wang S; Li Y; Wu H; Yue H; Du Y
    Radiat Oncol; 2023 Oct; 18(1):164. PubMed ID: 37803462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical target volume segmentation based on gross tumor volume using deep learning for head and neck cancer treatment.
    Kihara S; Koike Y; Takegawa H; Anetai Y; Nakamura S; Tanigawa N; Koizumi M
    Med Dosim; 2023 Spring; 48(1):20-24. PubMed ID: 36273950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic clinical target volume delineation for cervical cancer in CT images using deep learning.
    Shi J; Ding X; Liu X; Li Y; Liang W; Wu J
    Med Phys; 2021 Jul; 48(7):3968-3981. PubMed ID: 33905545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interobserver variability in target volume delineation in definitive radiotherapy for thoracic esophageal cancer: a multi-center study from China.
    Chang X; Deng W; Wang X; Zhou Z; Yang J; Guo W; Liu M; Qi X; Li L; Zhang K; Zhang M; Shi Y; Liu K; Zhao Y; Wang H; Yu Z; Zhang J; Wang L; Qiao X; Han C; Zhu S; Zhang R; Chen J; Hu C; Zhang F; Hou X; Pang Q; Zhang W; Li G; Lin H; Sun X; Ge X; Li C; Ge H; Li D; Wang Y; Lu N; Gao X; Qin S; Tian Y; Xiao Z
    Radiat Oncol; 2021 Jun; 16(1):102. PubMed ID: 34107984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability of gross tumour volume delineation: MRI and CT based tumour and lymph node delineation for lung radiotherapy.
    Kumar S; Holloway L; Boxer M; Yap ML; Chlap P; Moses D; Vinod S
    Radiother Oncol; 2022 Feb; 167():292-299. PubMed ID: 34896156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma.
    Krengli M; Milia ME; Turri L; Mones E; Bassi MC; Cannillo B; Deantonio L; Sacchetti G; Brambilla M; Inglese E
    Radiat Oncol; 2010 Feb; 5():10. PubMed ID: 20137093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of
    Najem E; Marin T; Zhuo Y; Lahoud RM; Tian F; Beddok A; Rozenblum L; Xing F; Moteabbed M; Lim R; Liu X; Woo J; Lostetter SJ; Lamane A; Chen YE; Ma C; El Fakhri G
    Radiother Oncol; 2024 May; 194():110186. PubMed ID: 38412906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma.
    Moureau-Zabotto L; Touboul E; Lerouge D; Deniaud-Alexandre E; Grahek D; Foulquier JN; Petegnief Y; Grès B; El Balaa H; Kerrou K; Montravers F; Keraudy K; Tiret E; Gendre JP; Grange JD; Houry S; Talbot JN
    Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):340-5. PubMed ID: 16168829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FDG-PET/CT imaging for staging and target volume delineation in preoperative conformal radiotherapy of rectal cancer.
    Bassi MC; Turri L; Sacchetti G; Loi G; Cannillo B; La Mattina P; Brambilla M; Inglese E; Krengli M
    Int J Radiat Oncol Biol Phys; 2008 Apr; 70(5):1423-6. PubMed ID: 17931795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radical chemoradiotherapy for adenocarcinoma of the distal oesophagus and oesophagogastric junction: what planning margins should we use?
    Whitfield GA; Jackson A; Moore C; Price P
    Br J Radiol; 2008 Dec; 81(972):921-34. PubMed ID: 18794193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PET/MRI-guided GTV delineation during radiotherapy planning in patients with squamous cell carcinoma of the tongue.
    Samołyk-Kogaczewska N; Sierko E; Zuzda K; Gugnacki P; Szumowski P; Mojsak M; Burzyńska-Śliwowska J; Wojtukiewicz MZ; Szczecina K; Jurgilewicz DH
    Strahlenther Onkol; 2019 Sep; 195(9):780-791. PubMed ID: 31214735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks.
    Tian M; Wang H; Liu X; Ye Y; Ouyang G; Shen Y; Li Z; Wang X; Wu S
    Med Phys; 2023 Oct; 50(10):6354-6365. PubMed ID: 37246619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.